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EXECUTIVE SUMMARY

The technology focus of this demonstration is a vehicle-towed array of time-domain
electromagnetic sensors designed and operated to optimize the classification of buried munitions
from ancillary metallic debris and clutter. The demonstrated technology, known as the
TEMTADS array, consists of 25 co-located transmit (Tx) and receive (Rx) pairs arranged in a
5x5 fixed grid configuration. The TxRx pairs are separated by 40cm center-to-center, which
results in a 2m square array. Transient decay data are collected for each Rx coil with a 500 kHz
sample rate until 25ms after turn off of the excitation pulse. The 25 Tx coils are operated
individually while recording with all 25 Rx, resulting in 625 spatial measurements. The system
is designed to interrogate subsurface sources one at a time sequentially. It collects data while
stationary.

The raw signature data from the TEMTADS array reflect details of the sensor/target geometry as
well as inherent EMI response characteristics of the targets themselves. In order to separate out
the intrinsic target response properties from sensor/target geometry effects the measured
signature is inverted to estimate principal axis magnetic polarizabilities using a standard induced
dipole response model.

The TEMTADS array was designed to combine the data quality advantages of a gridded survey
with the coverage efficiencies of a vehicular system. The design goal of this system is to collect
data equal, if not better, in quality to the best gridded surveys (the relative position and
orientation of the sensors being known better than for gridded data) while prosecuting many
more targets each field day.

The objective of this demonstration was to validate the discrimination technology through two
blind tests. The first demonstration was conducted at the Aberdeen Proving Ground (APG)
Standardized UXO Test Site. The second demonstration was conducted as part of the ESTCP
UXO Classification Study at the former Camp San Luis Obispo. At each demonstration, the site
had been blind seeded with a significant number of intact, inert UXO types to challenge UXO
classification systems and methodologies.

The performance metrics used to monitor the success of the technology relate to production rate,
accuracy of inverted features, analysis time, correct classification, and ease of use. As detailed
in later sections, all performance objectives were successfully met. At the APG site, the system
was able to interrogate over 150 targets per day. The inverted source locations were less than 10
cm in northing and easting from the ground truth locations. The analysis, which required
roughly 15 minutes per target, resulted in a false alarm reduction by over 50% with 95% correct
identification of munitions.

At the former Camp San Luis Obispo site, the system acquired data at over 125 anomalies per
day. All data were checked for quality on site and at pace with data collection. The average
error in location was less than 5cm in northing and easting and the average error in depth
estimation was less than 5cm.
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Qualitatively, the TEMTADS array was easy to use and proved to be a robust and reliable sensor
platform.

The primary limitation of this technology relates to the size of the system and site access. The
array is a 2-m square so fields where the vegetation or topography interferes with passage of a
trailer that size will not be amenable to the use of the 5x5 array.
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1.0 INTRODUCTION

1.1 BACKGROUND

Unexploded Ordnance (UXO) detection and remediation is a high priority triservice requirement.
As the Defense Science Board recently wrote: “Today’s UXO cleanup problem is massive in
scale with some 10 million acres of land involved. Estimated cleanup costs are uncertain but are
clearly tens of billions of dollars. This cost is driven by the digging of holes in which no UXOs
are present. The instruments used to detect UXOs (generally located underground) produce
many false alarms, - i.e., detections from scrap metal or other foreign or natural objects - , for
every detection of a real unexploded munition found.” [1]

There is general agreement that the best solution to the false alarm problem involves the use of
EMI sensors which, in principle, allow the extraction of target shape parameters in addition to a
size and depth estimate. We, and others, have fielded systems with either time-domain or
frequency-domain EMI sensors with the goal of extracting reliable target shape parameters and,
thus, improving the discrimination capability of our surveys. In practice, the discrimination
ability of these sensors has been limited by signal-to-noise limitations. Three of the largest noise
terms are inherent sensor noise, motion-induced noise, and sensor location uncertainty.

The three most successful demonstrations of EMI-based discrimination all involved cued
detection with gridded collection of EMI data [2-4]. The success of the gridded data collections
was due to the combination of minimal location uncertainty, no motion-induced noise, and
sufficient SNR. The downside of the implementations previously demonstrated is that they were
relatively slow and inefficient, especially on a large site. We have constructed an EMI sensor
array that combines the classification ability of a gridded survey with the coverage efficiency of
a vehicular array. By coming to a stop over each target to be investigated we are able to obtain
all the benefits of a gridded survey (negligible relative sensor location uncertainty, no motion-
induced noise, and high SNR) while moving rapidly to the next target with no set-up required
gives us the coverage efficiency required for practical success.

1.2 OBJECTIVE OF THE DEMONSTRATION

The objective of this demonstration was to validate the technology through a series of blind test
demonstrations. We conducted a shake-down demonstration of the technology at our Blossom
Point, MD field site but a blind test is the only true measure of system performance. The first
demonstration was conducted at the Aberdeen Proving Ground (APG) Standardized UXO Test
Site. The second demonstration was conducted as part of the ESTCP UXO Classification Study
at the former Camp San Luis Obispo. At each demonstration, the site had been blind seeded
with a significant number of intact, inert UXO types to challenge UXO classification systems
and methodologies. Demonstration scoring was conducted by IDA to maintain the integrity of
the ground truth.



1.3 REGULATORY DRIVERS

Stakeholder acceptance of the use of classification techniques on real sites will require
demonstration that these techniques can be deployed efficiently and with high probability of
discrimination. The first step in this process is to demonstrate acceptable performance on
synthetic test sites such as that at Aberdeen. As a second step, demonstration on a carefully
prepared and blind-seeded live site presents a more real-world scenario while providing
sufficiently complete validation data to accurately determine system performance. After these
hurdles have been passed, successful demonstration at a live site will further facilitate regulatory
acceptance of the UXO classification technology and methodology.

20 TECHNOLOGY

2.1 TECHNOLOGY DESCRIPTION
2.1.1 EMI Sensors

The EMI sensor used in the TEMTADS array is based on the Navy-funded Advanced Ordnance
Locator (AOL), developed by G & G Sciences. The AOL consists of three transmit coils
arranged in a 1-m cube; we have adopted the transmit (Tx) and receive (Rx) subsystems of this
sensor directly, converted to a 5 x 5 array of 35 cm sensors, and made minor modifications to the
control and data acquisition computer to make it compatible with our deployment scheme.

A photograph of an individual sensor element under construction is shown in the left panel of
Figure 2-1. The transmit coil is wound around the outer portion of the form and is 35 cm on a
side. The 25-cm receive coil is wound around the inner part of the form which is re-inserted into
the outer portion. An assembled sensor with the top and bottom caps used to locate the sensor in
the array is shown in the right panel of Figure 2-1.

receive coil

=

transmit coil

Figure 2-1 — Construction details of an individual EMI sensor (left panel) and the assembled sensor with
end caps attached (right panel).



Decay data are collected with a 500 kHz sample rate until 25ms after turn off of the excitation
pulse. This results in a raw decay of 12,500 points; too many to be practical. These raw decay
measurements are grouped into 115 logarithmically-spaced *“gates” whose center times range
from 42 ps to 24.35 ms with 5% widths and are saved to disk. Examples of the measured
transmit pulse, raw decay, and gated decay are shown in Figure 2-2.
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Figure 2-2 — Measured transmit current (on-time upper panel, off-time
second panel), full measured signal decay (third panel), and gated decay
(fourth panel) as discussed in the text.
2.1.2 Sensor Array

The twenty-five individual sensors are arranged in a 5 x 5 array as shown in Figure 2-3. The
center-to-center distance is 40 cm yielding a 2 m x 2 m array. Also shown in Figure 2-3 is the



position of the three GPS antennae that are used to determine the location and orientation of the

array for each cued measurement. A picture of the array mounted on the MTADS EMI sensor
platform is shown in Figure 2-4.
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Figure 2-3 — Sketch of the EMI sensor array showing the position of the
25 sensors and the three GPS antennae.

. GPS Antenna

Figure 2-4 — Sensor array mounted on the MTADS EMI sensor platform.



2.1.3 Application of the Technology

Application of this technology is straightforward. A list of target positions is developed from a
survey by some geophysical instrument; in the case of these demonstrations, either the MTADS
magnetometer array at APG or the EM61 MKII array at SLO. This target file, containing the
target location and an optional flag for additional “stacking’ or averaging, is transferred to the
system control program which uses the information from the three GPS antennae to guide the
operator to position the array over each target in turn. When positioned over the target, the data
acquisition computer steps through the array sensors sequentially, just as in the characterization
measurements discussed in the following section, and collects decays from all twenty-five
receive coils for each excitation. These data are then inverted for target location and
characteristics. At the end of the EMI data collection, a few seconds of platform position and
orientation data are collected to be used to translate the inverted target position, which is, of
course, relative to the array, to absolute position and orientation.

In the final version of this technology, one could envision the inversion being performed while
the operator is driving the array to the next target. For these demonstrations, we performed the
inversions off-line so that we would have the ability to intervene in the automatic process as
required. The EMI and position data were transferred to the analyst several times each day for
near real-time analysis at the demonstration site.

2.2 TECHNOLOGY DEVELOPMENT

The individual sensors (consisting of transmit electronics, transmit and receive coils, pre-amp,
and digitizer) were characterized at G & G Sciences before approval was given for construction
of the array. Examples of the characterization data are shown in Figure 2-5 and Figure 2-6.
System stability is shown in Figure 2-5 which plots the normalized (by measured transmit
current) response of a 2 in steel ball at 25 cm separation from the sensor. The data plotted are
decays 1, 1001, 2001, and 3001 in a continuously-triggered series that began from a cold start
and ran for 150 minutes.
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Figure 2-5 — Measured response from a 2-in steel sphere 25 cm from the
sensor. Decays 1, 1001, 2001, and 3001 from a series that started from a
cold start are plotted along with the expected response from this target.

For comparison purposes, the expected response from this sphere is plotted in black. As can be
seen, the sensor exhibits excellent stability which is important for cued deployment.

The second important characterization test is sensor response linearity. Since we collect decay
data to late times and over several orders of magnitude in amplitude, the linearity of system
response is very important. To characterize this property of the sensor, we constructed a series
of copper coils with nominal decay time constants of 2, 4, and 6 ms. The response of the three
coils is shown in Figure 2-6 which plots the measured decay on semi-log axes. After a transient
at early times, the decays exhibit clean exponential behavior with measured decay times of 1.8,
3.3, and 5.8 ms. Careful calculation of the expected decay times at the temperature at which the
tests were conducted results in expected values of 1.82, 3.26, and 5.73 ms; the measured values
are in excellent agreement with these.
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Figure 2-6 — Measured response from three calibration coils and the
background response between measurements plotted on a semi-log plot
to emphasize the exponential nature of the decay. The decay time
constants extracted from the measurements are listed in the legend.

After assembly of the array, a number of array calibration measurements were performed. The
first task was to ensure that each of the individual sensors has equivalent response. A jig was
constructed that allowed us to mount a 2-in steel sphere 30 cm below each array element in turn.
Data collected using this jig are shown in Figure 2-7. As can be seen, the measured decays from
each of the sensors plotted are indistinguishable.

The assembled array was then used to measure the response of a number of inert ordnance items
and stimulants mounted on a test stand, placed in our test pit, or buried in our test field. For each
series of measurements with the full array, we cycle through the sensors transmitting from each
in turn. After each excitation pulse, we record the response of all twenty-five receive coils.
Thus, there are 625 (25 x 25) individual transmit/receive pairs recorded, making it difficult to
present a full measurement in any coherent way. In Figure 2-8, we plot nine of the
transmit/receive pairs resulting from excitation of a 40-mm projectile located under the center of
the array. The decays plotted correspond to the signal received on the nine central sensors
(reference Figure 2-3 for the sensor numbering) when that sensor transmits. In other words, the
results of nine individual monostatic measurements are presented.

All 625 measurements are used for the inversion to recover target parameters. The inversion
results for the decay data shown in Figure 2-8 are shown in Figure 2-9. As we expect for an
object with axial symmetry such as a 40-mm projectile, we recover one large response
coefficient and two equal, but smaller ones. These response coefficients are the basis of the
discrimination decisions in this demonstration. Derived Bs for “Cylinder E” (3" x 12" steel
cylinder) in the test field are shown for comparison in Figure 2-10.
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Figure 2-8 — The response of nine of the individual sensors to a 40-mm projectile located
under the center of the array.
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Figure 2-10 — Derived response coefficients from a cued measurement
over "Cylinder E" in the test field.

The final array characterization test was to confirm that the response coefficients we recover are
invariant to object position and orientation under the array. Figure 2-11 shows the derived Ps
plotted for a 4.2-in mortar baseplate after measurements at three position/orientation pairs. As
can be seen, the inversion results are robust to variation in the object’s position and orientation.
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Figure 2-11 — Three sets of s derived from three measurements over a
4.2-in mortar baseplate at different position/orientation pairs.

2.3 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

The TEMTADS array is designed to combine the data quality advantages of a gridded survey
with the coverage efficiencies of a vehicular system. The design goal of this system is to collect
data equal, if not better, in quality to the best gridded surveys (the relative position and
orientation of the sensors being known better than for gridded data) while prosecuting many
more targets each field day.

There are obvious limitations to the use of this technology. The array is a 2-m square so fields
where the vegetation or topography interferes with passage of a trailer that size will not be
amenable to the use of the present array. The other serious limitation will be anomaly density.
For all sensors, there is a limiting anomaly density above which the response of individual
targets cannot be separated. We have chosen relatively small sensors for this array which should
help with this problem but we cannot eliminate it. Based on experiments at our test pit at
Blossom Point, the results of this demonstration, and work done on the former Camp Sibert data
sets, anomaly densities of 300 anomalies/acre or higher would limit the applicability of this
system as more than 20% of the anomalies would have another anomaly within a meter. For low
SNR targets, our standard data acquisition parameters may not be sufficient. The system
software has built in the capability to vary the data acquisition parameters on-the-fly based on
flags in the target file and can be reconfigured manual as required. One area in need of
development is a robust, consolidated data collection / data QC methodology for determining
when there is a low SNR anomaly and when there is no anomaly present. This issue is an area of
ongoing research.
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3.0 PERFORMANCE OBJECTIVES

The TEMTADS array was deployed to demonstrations at both the APG Standardized UXO Test
Site and the ESTCP UXO Classification Study site at the former Camp SLO. The performance
objectives for these demonstrations are summarized in Table 3-1. Since the TEMTADS array is
a discrimination technology, the performance objectives focus on the second step of the UXO
survey problem; we assume that the anomalies from all targets of interest have been detected and
included on the target list that we worked from.

Due to the nature of the demonstrations at each site and the employed scoring methods, separate
Performance Objectives are provided for each demonstration in the following subsections.

3.1 APG STANDARDIZED UXO TEST SITE

Table 3-1 — Performance Objectives for the APG Demonstration

Perfo_rmgnce Metric Data Required Success Criteria Results
Objective
Reduction of

Number of false Prioritized dig false alarms by >

Reduction of alarms eliminated at list 50% with 95%
. Yes

False Alarms demonstrator Scoring report correct

operating point. from APG identification of

munitions
Average error and Estlmated AN and AE < 10
. S location from

Location standard deviation in analvsis cm Yes
Accuracy both axes for Scor)i/ng report oNand oE < 15

interrogated items from APG cm
Production Number of targets Log of field 75 targets per Yes
Rate interrogated each day work day

Average time
A_naly5|s _requm_ad for Log of analysis 15 min per target Yes
Time inversion and work

classification

Feedback from

Ease of Use operator on ease Operator comes Yes

of use

to work smiling
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3.1.1 OBJECTIVE: REDUCTION OF FALSE ALARMS

This is the primary measure of the effectiveness of this technology. By collecting high-quality,
precisely-located data, we expect to be able to discriminate munitions from scrap and frag with
high efficiency.

3.1.1.1.Metric

At a seeded test site such as the APG standardized test site, the metric for false alarm elimination
is straightforward. We prepared a ranked dig list for the targets we interrogated with a dig/no-
dig threshold indicated and ATC personnel used their automated scoring algorithms to assess our
results.

3.1.1.2.Data Requirements

The identification of most of the items in the test field is known to the test site operators. Our
ranked dig list is the input for this standard and ATC’s standard scoring is the output.

3.1.1.3.Success Criteria

The objective will be considered to be met if more than 50% of the non-munitions items were
labeled as no-dig while retaining 95% of the munitions items on the dig list.

3.1.1.4.Results

This Objective was successfully met. The TEMTADS surveyed anomalies detected by the
MTADS magnetometer system in the Blind Grid and Indirect Fire Areas. Efficiency (E) and
false positive rejection rate (Rfp) are used to score discrimination performance ability at two
specific operating points on a ROC curve: one at the point where no decrease in Py is incurred
and the other at the operator-selected threshold. Efficiency is defined as the fraction of detected
ordnance correctly classified as ordnance and the false positive rejection rate is defined as the
fraction of detected clutter correctly classified as clutter. The results for the Blind Grid and
Indirect Fire Test Areas were E= 0.99 and Ry = 0.99, and E= 0.98 and Rg = 0.92 at the
operating point, respectively. With no loss of Py, the results were E= 1.00 and Rg, = 0.95, and
E= 1.00 and Rs, = 0.58, for the Blind Grid and the Indirect Fire Areas respectively. These data
are summarized from Tables 7a and 7c of Reference 15.

3.1.2 OBJECTIVE: LOCATION ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of predicted location of the targets marked to be dug. Large location errors lead to confusion
among the UXO techs assigned to the remediation costing time and often leading to removal of a
small, shallow object when a larger, deeper object was the intended target.
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3.1.2.1.Metric

As above, the metric for location accuracy is straightforward at a seeded test site such as the
APG standardized test site. We provided an estimated position for all targets we interrogated
and ATC personnel used their automated scoring algorithms to assess our results.

3.1.2.2.Data Requirements

The location of most of the items in the test field is known to the test site operators. Our dig list
is the input for this standard and ATC’s standard scoring is the output.

3.1.2.3.Success Criteria

The objective will be considered to be met if the average position error was less than 10 cm in
both dimensions (low bias) and the standard deviation of each dimension was less than 15 cm
(accurate location).

3.1.2.4.Results

This Objective was successfully met. The location accuracy of fit parameters generated from the
TEMTADS array data, taken from Tables 9a and 9c of Reference 15, are within 5 cm
horizontally (1 o) and 6 cm vertically (1 o) for the Indirect Fire Area. Horizontal errors are not
calculated for the Blind Grid. The vertical accuracy was 4 cm (1 o) for the Blind Grid.

3.1.3 OBJECTIVE: PRODUCTION RATE

Even if the performance of the technology on the two metrics above is satisfactory, there is an
economic metric to consider. There is a known cost of remediating a suspected munitions item.
If the cost to interrogate a target is greater than this cost, the technology will be useful only at
sites with special conditions or target values. Note, however, that in its ultimate implementation
this technology will result in reacquisition, cued interrogation, and target flagging in one visit to
the site.

3.1.3.1.Metric

The number of targets interrogated per day is the metric for this objective. Combined with the
daily operating cost of the technology this gives the per-item cost.

3.1.3.2.Data Requirements
Survey productivity was determined from a review of the ATC demonstration field logs.
3.1.3.3.Success Criteria

For this first demonstration, the objective will be considered to be met if at least 75 targets were
interrogated each survey day.
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3.1.3.4.Results

This Objective was successfully met. Data collection times are taken from Table 5 of Reference
15. 214 anomalies were investigated on the Blind Grid over the course of 1.43 work days, or on
average 149 anomalies / work day. 694 anomalies were investigated in the Indirect Fire Area
over the course of 32 hours and 30 minutes, or on average 170 anomalies / work day.

3.14 OBJECTIVE: ANALYSIS TIME

The ultimate implementation of this technology will involve on-the-fly analysis and
classification. The time for this will be limited to the driving time to the next anomaly on the
list. We will track the near-real-time analysis time in this demonstration.

3.1.4.1.Metric

The time required for inversion and classification per anomaly is the metric for this objective
3.1.4.2.Data Requirements

Analysis time was determined from a review of the data analysis logs.

3.1.4.3.Success Criteria

For this first demonstration, the objective will be considered to be met if the average inversion
and classification time was less than 15 min.

3.1.4.4.Results

This Objective was successfully met. The average inversion time per target was approximately
2.5 minutes on our field laptop computer. Including this, the average analysis time amounted to
12.5 minutes per anomaly. Since this was the first extensive test of the system in field mode, we
took the opportunity to consider various discrimination and classification methods, some of
which proved unfruitful. As a result of lessons learned from this undertaking, we expect the
average analysis time for future field runs to be less than that obtained here.

3.1.5 OBJECTIVE: EASE OF USE

This qualitative objective is intended as a measure of the long-term usability of the technology.
If the operator does not report that the technology is easy to use, shortcuts that can compromise
the efficiency of the technology will begin to creep into daily operations.

3.1.5.1.Data Requirements

This objective was evaluated based on operator feedback.

15



3.1.5.2.Results

This Objective was successfully met. Based on vehicle operator feedback, there were no
significant limitations to the efficient use of the system in the field. Several suggestions were
made for additional improvements to the navigation and data collection software. They have
been subsequently incorporated. Based on the suggestions, anomalies for future demonstrations
will be ordered along 1m swaths for maximum data collection efficiency.
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3.2 FORMER CAMP SAN LUIS OBISPO

Table 3-2 — Performance Obijectives for the former Camp SLO Demonstration

Perfo_rmgnce Metric Data Required Success Criteria Results
Objective
Quantitative Performance Objectives
_ Fraction of assigned I 100% as allowed for by
Site Coverage anomalies Survey results topography / vegetation Yes
interrogated
< 15% rms variation in
System response amplitude
Calibration Strip System response curves Down-track location
consistently matches : I +25cm No
Results - Daily calibration =
physics-based model ind
strip data All response values fall

within bounding curves

Average error and Estimated location

L ocation Acourac standard deviation in from analyses AN and AE <5cm o
Y| both axes for Ground truth from | oN and E < 10 cm
interrogated items validation effort
Estimated location
Standard deviation in | from analyses ADepth <5 cm
Depth Accuracy _depth for interrogated Ground truth from | oDepth < 10 cm No
items S
validation effort
. Survey results
, Number of anomalies 125 anomalies/da
Production Rate investigated each day | Log of field work Y Yes
Throughput of data Log of analysis All data QC’ed on site
Data Throughput | o o cess work and at pace with survey Yes

Qualitative Performance Objective

Team feedback and | _.

. - Field team comes to

General Observations | recording of - Yes
work smiling

emergent problems

Reliability and
Robustness

3.21 OBJECTIVE: SITE COVERAGE

A list of previously identified anomalies will be provided by the Program Office. The
expectation is to gather cued data with the TEMTADS system over each anomaly.
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3.2.1.1.Metric

Site coverage is defined as the fraction of the assigned anomalies surveyed by the TEMTADS.
Exceptions are to be made for topology / vegetation interferences.

3.2.1.2.Data Requirements

The collected data will be compared to the original anomaly list. Any interferences will be noted
in the field log book as they occur.

3.2.1.3.Success Criteria

The objective will be considered met if 100% of the assigned anomalies are surveyed with the
exception of areas that can not be surveyed due to topology / vegetation interferences.

3.2.1.4.Results

This objective was successfully met. Of the list provided by the Program Office, all but 5 were
measured. Failure to measure these 5 anomalies was due to the presence of rocks which
prevented the operator from positioning the TEMTADS over the target.

3.2.2 OBJECTIVE: CALIBRATION STRIP RESULTS

This objective supports that each sensor system is in good working order and collecting
physically valid data each day. The calibration strip is to be surveyed twice daily. The peak
positive response of each emplaced item from each run is compared to the physics-based
response curves generated prior to data collection on site using each item of interest.

3.2.2.1.Metric

The reproducibility of the measured response of each sensor system to the items of interest and
the comparison of the response to the response predicted by the physics-based model defines this
metric.

3.2.2.2.Data Requirements

Response curves for each sensor / item of interest pair are used to document what the physics-
based response of the system to the item should be. The tabulated peak response values from
each survey of the Calibration Strip demonstrates the reproducibility and validity of the sensor
readings.

3.2.2.3.Success Criteria

The objective will be considered met if all measured responses fall within the range of physically
possible values based on the appropriate response curve. Additionally, the RMS variation in
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responses should be less than 15% of the measured response and the down-track location of the
anomaly should be within 25 cm of the corresponding seeded item’s true location.

3.2.2.4.Results

This objective was not successfully met in full. The measured peak signals for all of the
emplaced items are shown in Figure 7-1 thru Figure 7-4. The maximum (red) and minimum
(blue) response curves are plotted for all objects except the shotput, which has only one curve
due to symmetry. The two curves for the 81-mm and 4.2-in mortar are nearly equal. For self-
consistency, we have plotted the measurements at the mean inverted depth, rather than the
reported depths. The measured values generally fit well within the bounding curves, with the 4.2-
in mortar and shotput results the poorest, with a tendency to underestimate the peak value.

Careful examination of the data shows that this variation is the result of the shot-to-shot
precision with which the array can be positioned in exactly the same spot each time. Because the
response curves are generated assuming the target is directly below the sensor, any offset in the
sensor position will result in the derived peak signal being smaller than that predicted by the
curve, as is observed. For future demonstrations, the metric of polarizability amplitude is
recommended as these values are invariant to array position.

3.2.3 OBJECTIVE: LOCATION ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of predicted location of the targets marked to be dug. Large location errors lead to confusion
among the UXO technicians assigned to the remediation costing time and often leading to
removal of a small, shallow object when a larger, deeper object was the intended target.

3.2.3.1.Metric

The average error and standard deviation in both horizontal axes will be computed for the items
which are selected for excavation during the validation phase of the study.

3.2.3.2.Data Requirements

The anomaly fit parameters and the ground truth for the excavated items will be required to
determine the performance of the fitting routines in terms of the location accuracy.

3.2.3.3.Success Criteria

This objective will be considered as met if the average error in position for both Easting and
Northing quantities is less than 5 cm and the standard deviation for both is less than 10 cm.

3.2.3.4.Results

This objective was not successfully met in full. The average Northing position error for all
measured data was 1.5cm, while the average Easting position error was 3cm. The standard
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deviations, however, were larger than desired, with both values about 25cm. Excluding those
anomalies for which multiple targets were found produces negligible improvement. We suspect
the higher values are due to the large number of small, low SNR clutter items, which result in
greater uncertainty in both the measured and fitted values. Indeed, if we restrict ourselves to
those anomalies which we classified as likely UXO, the Northing and Easting standard
deviations drop to 7cm and 5cm, respectively.

3.24 OBJECTIVE: DEPTH ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of predicted depth of the targets marked to be dug. Large depth errors lead to confusion among
the UXO technicians assigned to the remediation costing time and often leading to removal of a
small, shallow object when a larger, deeper object was the intended target.

3.2.4.1.Metric

The standard deviation of the predicted depths with respect to the ground truth will be computed
for the items which are selected for excavation during the validation phase of the study.

3.2.4.2.Data Requirements

The anomaly fit parameters and the ground truth for the excavated items will be required to
determine the performance of the fitting routines in terms of the predicted depth accuracy.

3.2.4.3.Success Criteria

This objective will be considered as met if the average error in depth is less than 5 cm and the
standard deviation is less than 10 cm.

3.2.4.4.Results

This objective was not met successfully in full. The average depth error for all measured data
was 2.5cm. The standard deviation was a bit larger than desired, with a value of l4cm.
Excluding those anomalies for which multiple targets were found and restricting the analysis to
those anomalies classified as ‘likely UXO’ to exclude low SNR clutter items, the standard
deviation drops to 7cm.

3.25 OBJECTIVE: PRODUCTION RATE

This objective considers a major cost driver for the collection of high-density, high-quality
geophysical data, the production rate. The faster quality data can be collected, the higher the
financial return on the data collection effort.
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3.2.5.1.Metric

The number of anomalies investigated per day determines the production rate for a cued survey
system.

3.2.5.2.Data Requirements

The metric can be determined from the combination of the field logs and the survey results. The
field logs record the amount of time per day spent acquiring the data and the survey results
determine the number of anomalies investigated in that time period.

3.2.5.3.Success Criteria
This objective will be considered met if average production rate is at least 125 anomalies / day.
3.2.5.4.Results

This objective was successfully met. A total of 1547 anomalies (including redo’s) were measured
over a 10-day run for an average of 155 anomalies/day. The only days for which our average fell
below our goal of 125 anomalies/day were the final day, due to finishing up all targets, and 2
days in which necessary vehicle repairs shortened our workday.

3.2.6 OBJECTIVE: DATA THROUGHPUT

The collection of a complete, high-quality data set with the sensor platform is critical to the
downstream success of the UXO Classification Study. This objective considers one of the key
data quality issues, the ability of the data analysis workflow to support the data collection effort
in a timely fashion. To maximize the efficient collection of high quality data, a series of
MTADS standard data quality check are conducted during and immediately after data collection
on site. Data which pass the QC screen are then processed into archival data stores. Individual
anomaly analyses are then conducted on those archival data stores. The data QC / preprocessing
portion of the workflow needs to keep pace with the data collection effort for best performance.

3.2.6.1.Metric

The throughput of the data quality control workflow is at least as fast the data collection process,
providing real time feedback to the data collection team of any issues.

3.2.6.2.Data Requirements

The data analysts log books will provide the necessary data for determining the success of this
metric.
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3.2.6.3.Success Criteria

This objective will be considered met if all collected data can be processed through the data
quality control portion of the workflow in a timely fashion.

3.2.6.4.Results

This objective was successfully met. Data were normally downloaded several times during each
workday, and quality control on these datasets was usually completed on the same day. Quality
control checks successfully caught missed anomalies, a small number of corrupt data files, and
targets which needed re-measuring.

For low SNR targets, our standard data acquisition parameters may not be sufficient. The system
software has built in the capability to vary the data acquisition parameters on-the-fly based on
flags in the target file and can be reconfigured manual as required. To date these capabilities
have not been demonstrated and could potentially have an impact on data throughput. A robust,
consolidated data collection / data QC methodology for determining when there is a low SNR
anomaly and when there is no anomaly present is necessary to accurately and efficiently utilize
these capabilities. This issue is an area of ongoing research.

3.2.7 OBJECTIVE: RELIABILITY AND ROBUSTNESS

This objective represents an opportunity for all parties involved in the data collection process,
especially the vehicle operator, to provide feedback on areas where the process could be
improved.

3.2.7.1.Data Requirements
Discussions with the entire field team and other observations will be used.
3.2.7.2.Results

This objective was successfully met. Based on vehicle operator feedback, there were no
significant limitations to the efficient use of the system in the field.

4.0 SITEDESCRIPTION

Two demonstrations were conducted for this project. The first was conducted at the APG
Standardized UXO Technology Demonstration Site located at the Aberdeen Proving Ground,
MD during the period of May through June, 2008. The second was conducted at the former
Camp San Luis Obispo, CA ESTCP UXO Classification Study Demonstration Site in June,
2009.
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4.1 APG STANDARDIZED UXO TECHNOLOGY DEMONSTRATION SITE
411 SITESELECTION

This was our first field demonstration of this combination of EMI sensors and survey mode. As
such, the demonstration was conducted on the Standardized UXO Test Site at APG. The APG
site is located close to our base of operations in southern Maryland and therefore minimizes the
logistics costs of the deployment. Use of this site allows us to receive validation results from
near-real-world conditions without incurring the logistics and intrusive investigation expenses
that would be required for a demonstration at a live site.

412 SITEHISTORY

The Standardized UXO Technology Demonstration Site is adjacent to the Trench Warfare
facility at the Aberdeen Proving Ground. The specific area was used for a variety of ordnance
tests over the years. Initial magnetometer and EMI surveys conducted by the MTADS team
performed after a “mag and flag” survey of the same area identified over a thousand remaining
anomalies. These data were used for a final clean up of the site prior to the emplacement of the
original test items. Prior to the two subsequent reconfiguration events, unexplained anomalies
identified by demonstrators using the site were also investigated and removed.

413 SITE TOPOGRAPHY AND GEOLOGY

According to the soils survey conducted for the entire area of APG in 1998, the test site consists
primarily of Elkton Series type soil [5]. The Elkton Series consist of very deep, slowly
permeable, poorly drained soils. These soils formed in silty aeolin sediments and the underlying
loamy alluvial and marine sediments. They are on upland and lowland flats and in depressions
of the Mid-Atlantic Coastal Plain. Slopes range from 0 to 2 percent.

Overall, the demonstration site is relatively flat and level. There are some low-lying areas in the
northwest portion of the site that tend to have standing water during the wet periods of the year.
The current sensor system is not sufficiently weatherproofed to operate through standing water.
However, during the most recent reconfiguration, the areas most prone to being underwater were
excluded from the survey scenarios. Anomalies that were located underwater or nearby to water
at the time of survey were deferred until the end of the survey and were interrogated by carefully,
if less efficiently, maneuvering the array into position.

414 MUNITIONS CONTAMINATION

The area currently occupied by the Standardized site has seen an extensive history of munitions
use. As an example, in 2003 we conducted a magnetometer survey of a previously unremediated
area directly adjacent to the Standardized site [6]. In a survey area of approximately 1 hectare,
we identified 2479 anomalies, of which 1921 were amenable to a model fit using our standard
analysis. Historical records provided by ATC and previous remediation results indicated that the
likely munitions of interest for this site were:
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4.1.5

SITE GEODETIC CONTROL INFORMATION

Grenades, Mkl, Mkll, and French VB Rifle w/o chute
Grenades, French VB Rifle w/ chute
60mm mortars (including 2” Smoke)
3” Stokes (Smoke and HE)
105 mm projectiles
155 mm projectiles

There are two first-order points on the site for use as GPS base station points. Their reported
coordinates are listed in Table 4-1. The horizontal datum for all values is NAD83. The vertical
control is referenced to the NAVD88 datum and the Geoid03 geoid. Point 477 was used as the

GPS base station point for the entirety of this demonstration.

Table 4-1 — Geodetic Control at the APG Demonstration Site

ID Latitude Longitude Elevation Northing Easting HAE
477 | 39°28'18.63880" N | 76°07' 47.71815"W 10.669 m | 4,369,749.013 | 402,810.038 | -22.545
478 | 39°28'04.24219" N | 76°07' 48.50439"W 11.747 m | 4,369,305.416 | 402,785.686 | -21.473

41.6 SITE CONFIGURATION

Figure 4-1 is a map of the Standardized UXO Technology Demonstration Site at APG. The
Calibration and Blind Grids are shown along with the various Open Field Areas.
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4.2 FORMER CAMP SAN LUIS OBISPO

The site description material reproduced is here is taken from the recent Sl report [7]. More
details can be obtained in the report. The former Camp SLO is approximately 2,101 acres
situated along Highway 1, approximately five miles northwest of San Luis Obispo, California.
The majority of the area consists of mountains and canyons. The site for this demonstration is a
mortar target on hilltop in MRS 05 (within former Rifle Range #12).

421 SITESELECTION

This site was chosen as the next in a progression of increasingly more complex sites for
demonstration of the classification process. The first site in the series, former Camp Sibert, had
only one target-of-interest and item “size” was an effective discriminant. At this site, there are at
least four targets-of-interest: 60-mm, 81-mm, and 4.2-in mortars and 2.36-in rockets. This
introduces another layer of complexity into the process.

4.2.2 SITEHISTORY

Camp SLO was established in 1928 by the State of California as a National Guard Camp.
Identified at that time as Camp Merriam, it originally consisted of 5,800 acres. Additional lands
were added in the early 1940s until the acreage totaled 14,959. From 1943 to 1946, Camp SLO
was used by the U.S. Army for infantry division training including artillery, small arms, mortar,
rocket, and grenade ranges. According to the Preliminary Historical Records Review (HRR),
there were a total of 27 ranges and thirteen training areas located on Camp SLO during World
War 11. Construction at the camp included typical dwellings, garages, latrines, target houses,
repair shops, and miscellaneous range structures. Following the end of World War 11, a small
portion of the former camp land was returned to its former private owners. The U.S. Army was
making arrangements to relinquish the rest of Camp SLO to the State of California and other
government agencies when the conflict in Korea started in 1950. The camp was reactivated at
that time.

The U.S. Army used the former camp during the Korean War from 1951 through 1953 where the
Southwest Signal Center was established for the purpose of signal corps training. The HRR
identified eighteen ranges and sixteen training areas present at Camp SLO during the Korean
War. A limited number of these ranges and training areas were used previously during World
War 1l. Following the Korean War, the camp was maintained in inactive status until it was
relinquished by the Army in the 1960s and 1970s. Approximately 4,685 acres was relinquished
to the General Services Administration (GSA) in 1965. GSA then transferred the property to
other agencies and individuals beginning in the late-1960s through the 1980s; most of which was
transferred for educational purposes (California Polytechnic State University and Cuesta
College). A large portion of Camp SLO (the original 5,880 acres) has been retained by the
California National Guard (CNG) and is not part of the FUDS program.
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4.2.3 SITE TOPOGRAPHY AND GEOLOGY

The former Camp SLO site consists mainly of mountains and canyons classified as grassland,
wooded grassland, woodland, or brush. A major portion of the site is identified as grassland and
is used primarily for grazing. Los Padres National Forest (woodland) is located to the north-
northeastern portion of the site. During the hot and dry summer and fall months, the intermittent
areas of brush occurring throughout the site become a critical fire hazard.

The underlying bedrock within the former Camp SLO site area is intensely folded, fractured, and
faulted. The site is underlain by a mixture of metamorphic, igneous, and sedimentary rocks less
than 200 million years old. Scattered throughout the site are areas of fluvial sediments overlaying
metamorphosed material known as Franciscan mélange. These areas are intruded by plugs of
volcanic material that comprise a chain of former volcanoes extending from the southwest
portion of the site to the coast. Due to its proximity to the tectonic interaction of the North
American and Pacific crustal plates, the area is seismically active.

A large portion of the site consists of hills and mountains with three categories of soils occurring
within: alluvial plains and fans; terrace soils; and hill/mountain soils. Occurring mainly adjacent
to stream channels are the soils associated with the alluvial plains and fans. The slope is nearly
level to moderately sloping and the elevation ranges from 600 to 1,500 feet. The soils are very
deep and poorly drained to somewhat excessively drained. Surface layers range from silty clay
to loamy sand. The terrace soils are nearly level to very steep and the elevations ranges from 600
to 1,600 feet. Soils in this unit are considered shallow to very deep, well drained, and
moderately well drained. The surface layer is coarse sandy loam to shaley loam. The
hill/mountain soils are strongly sloping to very steep. The elevation ranges from 600 to 3,400
feet. The soils are shallow to deep and excessively drained to well drained with a surface layer
of loamy sand to silty clay.

424 MUNITIONS CONTAMINATION

A large variety of munitions have been reported as used at the former Camp SLO. Munitions
debris from the following sources was observed throughout MRS 05 during the 2007 SI:

4.2-inch white phosphorus mortar
4.2-inch mortar base plate

3.5-inch rocket

37mm projectile

75mm projectile

flares found of newer metal; suspected
from CNG activities

105mm projectile
60mm mortar

81mm mortar

Practice bomb

30 cal. casings and fuzes

At the particular site of this demonstration, 60-mm, 81-mm, and 4.2-in mortars and mortar
fragments have been observed. During the initial EM61 MKII cart survey, two 2.36-in rockets
were found on the surface. The excavation of two 50° x 50’ grids in October 2008, as part of the
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preparatory activities, has confirmed these observations and provided information on the depths
of munitions at this target site.

425 SITE GEODETIC CONTROL INFORMATION

The 11.8-acre demonstration site is shown in Figure 4-2 as a series of included 30m x 30m cells
with a topographical map as the background. The cells are color-coded based on the data
collection systems that collected data on them, tan color for all systems and blue for vehicular
systems only. An interior area is excluded due to rock outcroppings and the local slope. There
are three control point monuments available near the site for use as GPS base station points
established by Cannon Associates, of San Luis Obispo, CA referenced against nearby
CALTRANS monument “A1315” [8]. The positions are listed in Table 4-1. Figure 4-3 shows
the locations of monuments “A1315” and “ESTCP” with respect to the demonstration site.
Monuments “MM” and “BUD” are located within 10m of “ESTCP” and are not shown for
clarity. The horizontal datum for all values is NAD83. The vertical control is referenced to the
NAVD88 datum and the Geoid03 geoid. Latitude and Longitude are given in degrees / minutes /
seconds. Northing and Easting values are given in UTM Zone 10 (meters).

Table 4-2 — Geodetic Control at the former Camp San Luis Obispo Demonstration Site

ID Latitude Longitude (deg) Elevation | Northing (UTM (U"Er?\ilt?gne HAE
(NADS83, deg) (NADS83, deg) (m) Zone 10, m) 10, m) (m)

ESTCP 35°20' 37.77465" N | 120° 44' 25.95073" W 113.69 3,913,515.94 705,330.89 | 76.01

MM 35°20'37.53766" N | 120° 44' 25.89483" W 113.54 3,913,508.67 705,332.47 | 75.81

BUD 35°20'37.61603" N | 120°44' 26.18134" W 113.66 | 3,913,510.92 705,325.18 | 75.93
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Figure 4-2 — ESTCP UXO Classification Study demonstration site at the former
Camp San Luis Obispo. The site is shown as a series of included 30m x 30m
cells. See the text for further discussion.
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Figure 4-3 — Locations of two GPS control points with respect to former Camp SLO demonstration site
426 SITE CONFIGURATION

The demonstration site was configured as a single 11.8 acre area as shown in Figure 4-2. The
site spans a significant fraction of the hillside that is the historical mortar target. The test pit was
located near the logistics base and the calibration strip was located outside the inner fence line,
convenient to the site access road.

5.0 TEST DESIGN

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

Each demonstration was designed to be executed in two stages. The first stage consisted of a
standard MTADS dynamic survey of site. For the APG demonstration, the MTADS
magnetometer array was the survey instrument. The details of the magnetometer survey can be
found in Reference 9. For the former Camp SLO demonstration, the MTADS EM61 MKII array
was the survey instrument. The details of the MKl survey can be found in Reference 10.

Anomaly locations were identified from the survey data in a combination automated / manual
method as described in Section 6.2. A data segment around each anomaly center was extracted
and analyzed using the UX-Analyze subsystem of the Oasis montaj software package as
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described in Section 6.2 to fit the data to a dipole model and extract the associated fit parameters
(position, depth, equivalent size). These fit results constituted the source anomaly list for the
second stage of each demonstration.

This method relies on the establishment of an anomaly detection threshold. At the former Camp
Sibert demonstration site, a single munitions type was present. Pit measurements at various
depths and orientations of an example article were made and bounding response curves
generated for the 4.2-in mortar, the munitions of interest. The anomaly detection threshold was
then set based on the least-favorably predicted response at the USACOE standard 11x depth.
These demonstration sites each contained different mixes of emplaced munitions and suspected
existing munitions contamination. Individual anomaly detection thresholds were established for
each site/area based on sets of pit measurements made at Blossom Point for each of the emplaced
items. For each site/area, the smallest appropriate least-favorable response will be used to
determine the threshold. The details of the anomaly selection process, including the response
curves can be found in the demonstration data reports [9,10].

The second stage of each demonstration was the survey of each site/area using the TEMTADS
array developed as part of ESTCP Project MM-0601. The array was positioned roughly over the
center of each anomaly on the source anomaly list and a data set collected. Each data set was
then inverted using the data analysis methodology discussed in Section 5.6.2, estimated target
parameters determined, and ultimately a classification made for each anomaly. The resulting
prioritized dig lists were then submitted to either the ATC or IDA for scoring and performance
assessment.

5.2 SITE PREPARATION

Each demonstration site had been previously configured with clearly-marked calibration and
open field scenarios. At least one GPS control point was provided at each site. Basic facilities
such as portable toilets and field buildings were provided at APG and acquired for SLO. Secure
storage for larger vehicles and sensor arrays was limited both sites. A 40-foot shipping container
was mobilized to the site for the duration of each demonstration to provide convenient, secure
storage for the MTADS tow vehicle and the sensor trailer. The container was removed at the end
of each demonstration.

5.3 SYSTEMS SPECIFICATION

This demonstration was conducted using the NRL MTADS tow vehicle and subsystems. The
tow vehicle and each subsystem are described further in the following sections.

5.3.1 MTADS Tow Vehicle

The MTADS has been developed with support from ESTCP. The MTADS hardware consists of
a low-magnetic-signature vehicle that is used to tow the different sensor arrays over large areas
(10 - 25 acres / day) to detect buried UXO. The MTADS tow vehicle and magnetometer array
are shown in Figure 5-1.
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Figure 5-1 - MTADS tow vehicle and magnetometer array.

5.3.2 RTK GPS System

Positioning is provided using cm-level Real Time Kinematic (RTK) Global Positioning System
(GPS) receivers. To achieve cm-level precision, a fixed reference base station is placed on an
established first-order survey control point near the survey area. The base station transmits
corrections to the GPS rover at 1 Hz via a radio link (450 MHz).

The TEMTADS array is located in three-dimensional space using a three-receiver RTK GPS
system shown schematically in Figure 2-3 [11]. The three-receiver configuration extends the
concept of RTK operations from that of a fixed base station and a moving rover to moving base
stations and moving rovers. The lead GPS antenna (and receiver, Main) receives corrections
from the fixed base station at 1 Hz. The corrected position of the Main GPS antenna is reported
at 10-20 Hz using a vendor-specific NMEA-0183 message format (PTNL,GGK or GGK). The
Main receiver also operates as a ‘moving base,” transmitting corrections (by serial cable) to the
next GPS receiver (AVR1) which uses the corrections to operate in RTK mode.

A vector (AVR1, heading (yaw), angle (pitch), and range) between the two antennae is reported
at 10 Hz using a vendor-specific NMEA-0183 message format (PTNL,AVR or AVR). AVR1
also provides ‘moving base’ corrections to the third GPS antenna (AVR2) and a second vector
(AVR?2) is reported at 10 Hz. All GPS measurements are recorded at full RTK precision, ~2-5
cm. The GPS position is averaged for 2 seconds as part of the data acquisition cycle. The
averaged position and orientation information are then recorded to the position data file.

5.3.3 Time-Domain Electromagnetic Sensor

The TEMTADS array is a 5 x 5 square array of individual sensors. Each sensor has dimensions
of 40 cm x 40 cm, for an array of 2 m x 2 m overall dimensions. The rationale of this array
design is discussed in Reference 12. The result is a cross-track and down-track separation of 40
cm. Sensor numbering is indicated in Figure 2-3. The transmitter electronics and the data
acquisition computer are mounted in the tow vehicle. Custom software written by NRL provides
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both navigation to the individual anomalies and data acquisition functionality. After the array is
positioned roughly centered over the center of the anomaly, the data acquisition cycle is initiated.
Each transmitter is fired in a sequence winding outward from the center position (12) in a
clockwise direction. The received signal is recorded for all 25 Rx coils for each transmit cycle.
The transmit pulse waveform duration is 2.7s (0.9s block time, 9 repeats within a block, 3 blocks
stacked, with a 50% duty cycle). While it is possible to record the entire decay transient at 500
MHz, we have found that binning the data into 115 time gates simplifies the analysis and
provides additional signal averaging without significant loss of temporal resolution in the
transient decays [13]. The data are recorded in a binary format as a single file with 25 data
points (one data point per Tx cycle). The filename corresponds to the anomaly under
investigation.

5.4 CALIBRATION ACTIVITIES

For the TEMTADS array, a significant amount of data has been collected with the system as
configured at our Blossom Point facility, both on a test stand and in the towed configuration on
our test field [14]. These data and the corresponding fit parameters provide us with a set of
reference parameters including those of clear background (i.e. no anomaly present).

At APG, daily calibration efforts consisted of collecting background (no anomaly) data sets at
the beginning and end of each survey day and periodically throughout the day at quiet spots to
determine/monitor the system noise floor. A canonical reference object, a 4” Al sphere, was
placed in the test pit located near the Calibration Area and measured each day to monitor the
daily variation in the system response. These two types of measurements constituted the daily
calibration activities.

The sphere measurements are background subtracted and inverted to obtain the target
polarizabilities. These data allow us to calibrate our sensor response in two separate ways. First,
by comparing the polarizabilities derived from each separate measurement, we can monitor the
daily variation in the system response. In Figure 5-2, we plot the average polarizability for all
sphere measurements obtained during our entire run as a function of decay time. Variations of
less than 10% of the reference values were observed over the course of eight days.
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Figure 5-2 — Average polarizability for all measurements at APG of the 4” Aluminum sphere as a
function of decay time

Second, we compared our derived polarizabilities directly with the predicted decay of the sphere.
The theoretical decay depends on the target’s size and conductivity. We have determined this
latter value for the sphere by careful measurements with a host of sensors over the years. The
theoretical decay is then calculated and the derived polarizabilities are scaled in amplitude to
produce the best match. Figure 5-3 shows the result for one measurement.

As this was the first demonstration of the TEMTADS array, the effect of background variation
from point to point and over time was not fully understood and remains an object of study. As
such, frequent backgrounds were taken over the course of each field day for immediate use for
background subtraction and future analysis regarding issues of background variability and the
impact on fit parameter extraction. Nine background locations were identified from the
magnetometer data as being ‘quiet’ or having a very low background response level. The
selected locations were positioned throughout the site to minimize the drive time to a background
point from any position on the field. Additional details on system calibration at APG can be
found in Reference 9.
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Figure 5-3 — Comparison of measured (blue) versus theoretical (red) polarizability as a function
of time for the 4” Aluminum sphere

At the former Camp SLO, a calibration strip comprised of two replicates of each item of interest
was emplaced on site to verify proper system operation on a daily basis. The calibration strip was
surveyed each morning and each evening that data is collected. The data were preprocessed,
checked for data quality, and then the signal strengths and noise levels compared to the site-
specific response curves and background levels to verify consistency of system performance.
Please refer to the ESTCP UXO Classification Study Demonstration Plan and the MTADS
Magnetometer / EM61 MKII Demonstration Data Report [10] for further details.

5.5 DATA COLLECTION
5.5.1 Scale of Demonstration

The APG demonstration was conducted at the APG Standardized UXO Test Site. A
magnetometer survey was conducted on the Calibration and Blind Grids, as well as the Indirect
Fire Area (approximately 4.3 acres) on May 7, 2008. The TEMTADS array surveyed the
Calibration and Blind Grids. The array was also deployed to approximately 700 anomalies in the
Indirect Fire Area that were detected from the magnetometer data set. The TEMTADS array
portion of the demonstration occurred from June 16 — 23, 2008.

A cued discrimination survey of the former Camp SLO demonstration was conducted within the
11.8 acre final demonstration site of approximately 1,500 previously-identified anomalies from
the anomaly list generated from the MTADS EM61 MKII data set. This survey was conducted
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using the NRL TEMTADS. Characterization of the system responses to the items of interest was
determined using on site measurements (both pit data and calibration strip). The data segment
(chip) for each anomaly was analyzed, and dipole model fit parameters extracted.

5.5.2 Sample Density

Magnetometer data were collected with nominal down-track spacing of 6 cm and cross track
spacing of 25 cm. EM61 MkII EMI data were collected with a nominal down-track spacing of
15 cm and a cross track spacing of 50 cm. Two orthogonal surveys were conducted to increase
target illumination and data density. The EMI data spacing for the TEMATDS is fixed at 40 cm
in both directions by the array design.

5.5.3 Quality Checks

Preventative maintenance inspections were conducted continually by all team members during
data collection, focusing particularly on the tow vehicle and sensor trailer. Deficiencies were
addressed according to the severity of the deficiency. Parts, tools, and materials for many
maintenance scenarios are available in the system spares inventory, a fraction of which was on
site at APG due to the proximity of our base of operations at Blossom Point, MD. Please refer to
the Demonstration Data Reports for further details on the survey instrument QC procedures.

Since the TEMTADS operates in a cued mode, the data QC procedures and checks differ from
that of the survey mode instruments. The status of the RTK GPS system can be visually
determined by the operator prior to starting the data collection cycle, assuring that the position
and orientation information are valid (FQ 3) during the collection period.

Two data quality checks were performed on the TEMTADS data. After background subtraction,
contour plots of the signal were generated for the 25 transmit/receive pairs at a decay time of
0.042 ms. An example of a good data set from a single anomaly with a large SNR is shown in
Figure 5-4 for Calibration Area item 16. The plots were visually inspected to verify that there
was a well defined anomaly without extraneous signals or dropouts. QC on the transmit/receive
cross terms was based on the dipole inversion results. Our experience has shown that data
glitches show up as reduced dipole fit coherence. No data glitches were observed during our
APG demonstration, so data collected at our Blossom Point facility for a 105mm HEAT
Projectile are used as an example. The fit polarizabilities as a function of decay time are shown
with all elements (Figure 5-5) and with element 21 excluded (Figure 5-6), with fit coherences of
0.699 and 0.992 respectively. In comparing Figure 5-5 and Figure 5-6, the expected axial
symmetry of the minor polarizabilities is restored with the exclusion of element 21 in this case.
The problem with element 21 is only observable at late time and therefore would not be captured
in the monostatic plot review.
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Figure 5-4 — Monostatic QC contour plot for Calibration Area item 16
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Figure 5-5 — Polarizability as a function of time for a 105mm HEAT Projectile with all data
included. The fit coherence for all elements included was 0.699.
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Figure 5-6 — Polarizability as a function of time for a 105mm HEAT Projectile with element 21
excluded. The fit coherence with element 21 excluded was 0.992.

The issue of when multiple objects are found to be under the array simultaneously, generating
overlapping signatures, can also be addressed at this point in the data QC process. An example
case is shown in Figure 5-7. There are two apparent issues in the data set. First, there appears to
be a small, shallow bit of scrap on top of the target. Second, there was a bit of scrap present in
the background file used. This latter issue is seen in the data from element 0. Figure 5-8 shows
the fit betas obtained using all of the data. Figure 5-9 shows the fit betas obtained excluding
elements 0,5,10,11,15,16,17,20,21,22. The latter betas match our library 105mm HEAT betas
very well.

Any data set that was deemed unsatisfactory by the data analyst, was flagged and not processed
further. The anomaly corresponding to the flagged data was logged for future re-acquisition.
Data which meet these standards are of the quality typical of the MTADS system.
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Figure 5-7 — Monostatic QC contour plot for example anomaly
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Figure 5-8 — Polarizability as a function of time for the example show in Figure 5-7 with all data
included. The fit coherence for all elements included was 0.652.

39



100.0000

10.0000

1.0000

0.1000

Betas
L1 \HH‘

0.0100

0.0010

0-0001 Il Il Il I ‘
0.01 0.10

L1 ‘
1.00
Time(ms)

10.00 100.00

Figure 5-9 — Polarizability as a function of time for the example show in Figure 5-7 with elements
0,5,10,11,15,16,17,20,21,22 excluded. The fit coherence for the remaining elements was 0.985.

5.5.4 Data Handling

Data were stored electronically as collected on the MTADS vehicle data acquisition computer
hard drives. Approximately every two survey hours, the collected data were copied onto
removable media and transferred to the data analyst for QC/analysis. The data were moved onto
the data analyst’s computer and the media recycled. Raw data and analysis results were backed
up from the data analyst’s computer to optical media (CD-R or DVD-R) or external hard disks
daily. These results are archived on internal file servers at NRL or SAIC. All field notes /
activity logs were written in ink and stored in archival laboratory notebooks. These notebooks
are archived at NRL or SAIC. Relevant sections are reproduced in demonstration reports such as
this. Dr. Tom Bell is the POC for obtaining data and other information. His contact information
is provided in Appendix A of this report.

5.5.5 APG Discrimination Survey Data Summary

The MTADS tow vehicle and TEMTADS array were mobilized to the APG Test Site during the
week of June 9, 2008. The TEMTADS array portion of the demonstration commenced on June
16, 2008 with a data collection in the Calibration Area. Cued surveys were conducted of the
Calibration, Blind Grid, and the Indirect Fire Area. Data collection was completed on June 23,
2008. The system was demobilized later that week to our Blossom Point facilities.
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The array was positioned roughly over the center of each anomaly on the source anomaly list for
each area and a data set collected. Each data set was then inverted using the data analysis
methodology discussed in Section 5.6.2, estimated target parameters determined, and ultimately
a classification made for each item for the Blind Grid and Indirect Fire Area.

5.5.5.1.Calibration Area

The ground truth for the Calibration Area is known and the collected data were used to verify the
operational status of our systems and processing procedures. Each of the 66 seed locations in the
Calibration Area was investigated in turn and the resultant fit parameters used to cross-check
against and augment our library of responses to known munitions items. Data collection
occurred on June 16, 2008.

5.5.5.2.Blind Grid

The Blind Grid is composed of 400 cells in a 20x20 array with 2m on-center spacing. The Rank
1 and 2 anomalies (214 anomalies) identified in the magnetometer survey (See Reference 9)
formed the Blind Grid anomaly list for the TEMTADS array. ATC staff placed a plastic pin flag
on the center of each of the 214 anomalies investigated prior to this portion of the demonstration.
Data collection occurred during the period June 16 - 17, 2008. The background-corrected data
set for each anomaly is included on the accompanying DVD.

5.5.5.3.Indirect Fire Area

The Indirect Fire Area is a 1.3 ha area drawn from the original configuration’s Open Field. The
IDF has been seeded with three munitions types, the 60mm and 81mm Mortar and the 105mm
Projectile. The 694 anomalies in Ranks 1, 2, 3, and 7 (See Reference 9) were added to the IDF
anomaly list for the TEMTADS array. Data collection occurred during the period June 17 - 23,
2008.

5.5.6 Former Camp San Luis Obispo

The MTADS tow vehicle and the TEMTADS array were mobilized to the former Camp SLO
along with the other MTADS systems in May, 2009. The TEMTADS portion of the
demonstration commenced on June 8, 2009. Cued surveys were conducted for approximately
1,500 anomalies identified from the MTADS EM61 MKII array survey data. The Calibration
Strip was surveyed twice daily, once at the beginning and once at the end of the survey day.
Data collection was completed on June 18, 2009. The system was demobilized later that week to
our Blossom Point facilities.

The array was positioned roughly over the center of each anomaly on the source anomaly list and
a data set collected. Each data set was then inverted using the data analysis methodology
discussed in Section 5.6.2, estimated target parameters determined, and ultimately a
classification made for each entry on the anomaly list.
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5.5.6.1.Calibration Strip

A calibration strip, comprised of two samples of each of the four targets of interest plus two
shotputs, was emplaced on site as a means of verifying proper system operation on a daily basis.
The strip was surveyed twice daily, once at the beginning of the day, and once at the end. The
sole exception to this procedure occurred on our third day, when brake problems with the vehicle
forced an early cessation of activities. The measured peak signal for each emplaced item was
determined for each run and compared over the course of the demonstration to insure the
reproducible, physically realistic performance of the sensor array. The results are discussed in
Section 7.0.

5.5.6.2.Main Demonstration

The former Camp SLO demonstration site was 11.8 acre area as shown in Figure 4-2. A total of
1547 anomalies (including reacquisitions requested by the Data Analyst) were measured over a
period of 10 days for an average of 155 anomalies/day. The only days for which our average fell
below our goal of 125 anomalies/day were the final day, due to completing the data collection,
and 2 other days in which necessary vehicle maintenance shortened our workday.

5.6 VALIDATION
5.6.1 Aberdeen Proving Grounds

With the exception of the Calibration Grid, the ground truth for the Standardized sites is held
back from individual technology demonstrators to preserve the utility of the Blind Grid and Open
Field Areas. Results from the Blind Grid and the Indirect Fire Area were submitted to ATC for
performance evaluation. Scoring results have been received and are available [15]. A summary
of the results are given in Section 7.0.

5.6.2 Former Camp San Luis Obispo

At the conclusion of data collection activities, all anomalies on the master anomaly list
assembled by the Program Office were excavated. Each item encountered was identified,
photographed, its depth measured, its location determined using cm-level GPS, and the item
removed if possible. All non-hazardous items were saved for later in-air measurements as
appropriate. This ground truth information, once released, was used to validate the objectives
listed in Section 3.2.

6.0 DATA ANALYSIS AND PRODUCTS

The TEMTADS is a cued UXO classification system. There were two parts to the data
collection in each demonstration: an initial survey which served primarily to locate targets, and
TEMTADS measurements made over the each target detected in the survey. The TEMTADS
data were used for target classification and discrimination.
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6.1 PREPROCESSING

The collected survey data were preprocessed on site for quality assurance purposes using
standard TEMTADS procedures and checks as discussed in Section 5.5.3 and References 9 and
19.

The TEMTADS has 25 transmitters/receiver pairs. For each transmit pulse, the response
measured at all of the receivers was recorded simultaneously. For each target, a 25 x 25 x N data
array is generated, where N is the number of recorded time gates. The current system
configuration bins the data in 121 logarithmically spaced gates. During the preprocessing step,
the recorded signals are normalized by the transmitter currents to account for any transmitter
variations. To account for time delay due to effects of the receive coil and electronics, we
subtract 0.028 ms from the nominal gate times [16]. The delay was previously determined
empirically by comparing measured responses for test spheres with theory. The measured
responses include distortions due to transmitter ringing and related artifacts out to about 40 ps.
Consequently we only included the responses from decay times beyond 40 us in our analyses.
This leaves 115 gates spaced logarithmically between 0.042 ms and 25 ms.

The background response was subtracted from each target measurement using data collected in a
nearby target-free region, or background. Background locations were selected from quiet areas
observed in the magnetometer anomaly map. All of the background measurements were inter-
compared to evaluate background variability and to identify outlier measurements potentially
corresponded to measurements over non-ferrous targets. We have not observed significant
background variability in our measurements at our Blossom Point test site, and were able to use
blank ground measurements from 100 meters away for background subtraction on targets in the
test field.

Geo-referencing of the array data is based on the GPS data, which gives the location of the center
of the array and the orientation of the array. Sensor locations within the array are fixed by the
array geometry. Dipole inversion of the array data (Section 6.3) determines target location in
local array-based coordinates. The local position was then transformed to absolute coordinates
using the array location and orientation determined from the corresponding GPS data.

6.2 TARGET SELECTION FOR DETECTION

Targets were selected from the survey data using the threshold exceedance methods described in
References 9 and 10 using a physics-based threshold in Oasis montaj. The data chips associated
with the detected anomalies were then processed in an automatic processing mode of UX-
Analyze. The results of the automatic processing were then reviewed in UX-Analyze’s
interactive mode to allow operator experience to be included in the target selection. In the case
of the APG demonstration, a small number of additional anomalies were identified by the
operator and added to the anomaly list. For the former Camp SLO demonstration, the operator
coalesced double-peaked features into a single anomaly where appropriate.
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The UX-Analyze environment for anomaly review contains two main graphics tools. One
displays an interpolated amplitude image of all the data processed at the site for the current
survey and allows the analyst to see which grids of the site have been surveyed and to select
grids for target analysis. The area selected for analysis is displayed in another graphic window
in which the analyst visually selects targets for review. In both of these windows there are
options for changing the view area, the mapping color palette and contrast, the amount of
information overlaid on the screen, etc. To refine a characterization of a target, the analyst
modifies the data boundary around the using the mouse. When the boundary is closed, the data
inside are sent to a dipole fitting algorithm to determine target parameters such as location, depth
and apparent size. The anomaly lists were then sorted prioritized dig lists.

6.3 PARAMETER ESTIMATION

The raw signature data from the TEMTADS reflect details of the sensor/target geometry as well
as inherent EMI response characteristics of the targets themselves. In order to separate out the
intrinsic target response properties from sensor/target geometry effects we invert the signature
data to estimate principal axis magnetic polarizabilities for the targets. The TEM data are
inverted using the standard induced dipole response model wherein the effect of eddy currents
set up in the target by the primary field is represented by a set of three orthogonal magnetic
dipoles at the target location [17]. The measured signal is a linear function of the induced dipole
moment m, which can be expressed in terms of a time dependent polarizability tensor B as

m = UBU"H,

where U is the transformation matrix between the physical coordinate directions and the
principal axes of the target and Hy is the primary field strength at the target. The eigenvalues B;(t)
of the polarizability tensor are the principal axis polarizabilities.

Given a set of measurements of the target response with varying geometries or "look angles" at
the target, the data can be inverted to determine the (X,Y,Z) location of the target, the orientation
of its principal axes (¢,0,y), and the principal axis polarizabilities ($1,B2,83). The basic idea is to
search out the set of nine parameters (X,Y,Z,0,0,y,B1,B2,83) that minimizes the difference
between the measured responses and those calculated using the dipole response model.

For the TEMTADS data, inversion is accomplished by a two-stage method. In the first stage, the
target’s (X,Y,Z) dipole location is solved for non-linearly. At each iteration within this
inversion, the nine element polarizability tensor (B) is solved linearly. We require that this
tensor be symmetric; therefore, only six elements are unique. Initial guesses for X and Y are
determined by a signal-weighted mean. The routine normally loops over a number of initial
guesses in Z, keeping the result giving the best fit as measured by the chi-squared value. The
non-linear inversion is done simultaneously over all time gates, such that the dipole (X,Y,Z)
location applies to all decay times. At each time gate, the eigenvalues and angles are extracted
from the polarizability tensor.
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In the second stage, six parameters are used: the three spatial parameters (X,Y,Z) and three
angles representing the yaw, pitch, and roll of the target (Euler angles ¢,0,y). Here the
eigenvalues of the polarizability tensor are solved for linearly within the 6-parameter non-linear
inversion. In this second stage both the target location and its orientation are required to remain
constant over all time gates. The value of the best fit X, Y, and Z from the first stage, and the
median value of the first-stage angles are used as an initial guess for this stage. Additional loops
over depth and angles are included to better ensure finding the global minimum.

Figure 6-1 shows an example of the principal axis polarizabilities determined from TEMTADS
data. The target, a mortar fragment, is a slightly bent plate about %2 cm thick, 25 cm long and 15
cm wide. The red curve is the polarizability when the primary field is normal to the surface of
the plate, while the green and blue curves correspond to cases where the primary field is aligned
along each of the edges.
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Figure 6-1 — Principal axis polarizabilities for a %2 cm thick by 25cm long
by 15cm wide mortar fragment.

Not every target from the detection surveys had a strong enough TEM response to support
extraction of target polarizabilities. All of the data were run through the inversion routines, and
the results were manually screened to identify those targets that could not be reliably classified.
Several criteria were used in this process: signal strength relative to background, dipole fit error
(difference between data and model fit to data), the visual appearance of the polarizability
curves.

For moderate-to-good SNR, our derived polarizabilities can be directly compared with those of
our target library. In these cases, a metric was computed based on how well the amplitude and
ratio of the target polarizabilities match those of library objects. The metric runs from 0 (no
match) to 1 (perfect match). For the APG demonstration and targets with lower SNR, or for
cases where a visual inspection suggested a match, but the match quality was below our cutoff,
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target classification and discrimination were done using library matching procedures similar to
those used by Sky Research, Lawrence Berkeley Lab and ourselves in the ESTCP Discrimination
Study Pilot Program at the former Camp Sibert [18]. The fit quality of an unconstrained dipole
inversion of the TEMTADS data was compared to the fit quality of a dipole fit constrained by a
set of principal axis polarizabilities drawn from a signature library. Fit quality is the squared
correlation coefficient between the model fit and the data. If the ratio of the constrained fit
quality to the unconstrained fit quality (p) is one, then the library item is as good a match to the
data as possible. If the ratio is small, then the library item is a poor match.

The scoring rules for the SLO demonstration were different than those used for APG
submissions, including the introduction of the “Can’t Decide” category discussed in the next
section. Therefore a similar, but modified process was used. The primary library match
algorithm compares the polarizabilities of an unknown target with each library entry based on 3
criteria: the amplitude of B, and the two shape parameters, B./p1 and Bs/Bi1. The difference in the
values is computed at all timegates, excluding those where the values are negative. The
differences are then plugged into a Gaussian. The “time constants” in these Gaussians were
derived by examining the variability in the amplitude and shape parameters for a large number of
objects for which ground truth was known. Medians are taken to avoid bad data points. Finally,
the results from the 3 different criteria are averaged, producing a metric which ranges from 0
(worst possible fit) to 1 (perfect fit). Note that the procedure just described is not a library
constrained match, i.e., we do not invert our data forcing the B’s to be those of each library object
in turn, but rather simply compare our unconstrained polarizabilities to those of the library. As
such, the comparison runs rapidly, and there is no need to reduce the number of separate types in
the library to balance computation time.

For each anomaly, this match is performed on both the polarizabilities from the single dipole fit,
and those of each target obtained by the multi-dipole fit. The metric is set to whichever set of B’s
produces the best match.

Due to the occasional “splitting” of the two smaller B’s, we also considered a second metric in
which the 3" comparison, namely the Bs/B1 shape match, was dropped from the calculation. Two
separate prioritized dig lists were submitted, one using the 3 criteria match metric, and one using
this 2 criteria match metric.

6.4 CLASSIFIER AND TRAINING

Prior to the demonstrations we collected training data in air for all of the 14 standard APG
ordnance targets and the four known munitions types for the former Camp SLO site. These data
were used to generate the fit library entries. Many of the targets are composites of two or more
distinct parts, like a steel body combined with an aluminum tail assembly. Depending on the
distance between the sensors and the target, such items can exhibit a range of slightly different
EMI signatures corresponding to excitation from different directions. We included
measurements with the target oriented nose up, towards the sensor array, nose down, away from
the array, flat and obliquely in the fit library.
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Our experience at our Blossom Point test site has been that polarizabilities determined from in-
air measurements are indistinguishable from those determined from measurements taken over
buried targets. We used the data collected from the site calibration areas, which contains several
instances of each target, to establish that this held true.

We have assembled a fairly extensive polarizability database for clutter items recovered from
several different sites. This library was used as training data for establishing UXO/clutter
discrimination boundaries on the direct match metric and on the coherence ratio p.

As noted in Section 6.3, for anomalies with moderate-to-good SNR and no serious overlap
issues, classification was done using the direct match metric, wherein the unconstrained
polarizabilities are compared with those of library objects. For the APG demonstration, using the
results of the Calibration Grid, and even considering Blind Grid and IDF anomalies where the
visual match to a library object is so good that we have high confidence in the identification, we
determined a cutoff value for our metric of 0.56 (reduced to 0.44 for the 25 mm), above which
the target is considered ordnance, and below which it is considered clutter. This can be
considered a first pass for classification, and was applied to all anomalies.

For the former Camp SLO demonstration, a different classification scheme was used. A series of
decision rules were used to classifying anomalies into 4 categories for placement on the final,
prioritized dig list. These decision rules are outlined below, as well as the criteria for determining
overlapping signatures.

6.4.1 Cannot Analyze

We classified targets as “Cannot Analyze” for those which the inversion produced unphysical
parameters, specifically, depths below a cutoff based on the largest target expected on the site,
and negative polarizabilities. A depth value of 2m was used.

6.4.2 Likely Munition

We classified targets as “Likely Munitions” based on the library match metrics previously
described. The cutoff is determined to insure that all training targets revealed as UXO or TOI
with moderate-to-good signal-to-noise were included. Our cutoff values were 0.8336 for the 3
criteria metric, and 0.8925 for the 2 criteria metric.

6.4.3 Cannot Decide

Targets in this category were comprised of four distinct types. The first type consisted of targets
with very low signal-to-noise, based on previous experience with this instrument. A cutoff signal
amplitude value of 2mv/A was used. The second type was targets which suffered from serious
overlap issues with neighboring anomalies, to the extent that we were not confident in our ability
to extract meaningful features. The remaining two categories excluded cases from the first two.
The third category consisted of targets whose match metric fell within a “buffer zone” below the
“Likely Munition” metric cutoff. The anomalies in this category possessed a match metric which
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was not sufficiently high to justify their being classified as “Likely Munitions”, but which is not
sufficiently low to classify them as “Likely Clutter”. The actual values for this lower metric
cutoff were determined from a visual inspection of matches in the Test Set data, and were equal
to 0.7365 for the 3 criteria metric, and 0.8335 for the 2 criteria metric. Finally, the fourth type
consisted of anomalies for which the metric fell below the “Likely Munition” cutoff, but which
possess axial symmetry. This choice was made to take account of the fact that our library is
finite. Exceptions to the axial symmetry rule were targets that showed rapid decay (based on the
most rapid decay for UXO in the complete library), and targets whose polarizabilities were of
very small amplitude (based on the smallest amplitude UXO in the complete library). We
conservatively defined axial symmetry as a median agreement of 50% between the two smaller
betas.

6.4.4 Likely Clutter

Targets were placed in this category whose metric fell below that of the second “buffer zone”
cutoff and which did not show axial symmetry as previously defined.

6.4.5 Ranking

The “Likely Clutter” category was divided into two subcategories: low signal-to-noise and
moderate to high signal-to-noise. Within each of these subcategories, ranking was done by the
library match metric, such that the lower the metric, the higher the rank. However, all anomalies
in the low SNR subcategory were ranked lower than those in the moderate to high SNR
subcategory. The rationale behind this is that low SNR can decrease the quality of the match
metric, and the targets for which we had the highest confidence of being clutter are those with a
low metric and decent SNR. Similarly, the “Cannot Decide” category was divided into three
subcategories based on the four types of entries, with the targets having low signal and overlap
issues having the highest rank, followed by those with moderate-to-high signal and no serious
overlap issues, with those targets having a metric above the “buffer zone” cutoff giving a lower
ranking (less likely to be clutter) than those below. The ranking within each subcategory was
ordered by the metric. Finally, the “Likely Munition” category was ranked solely by the metric,
with the largest rank going to the largest metric value.

Since it is not obvious how to incorporate either the axial symmetry parameter, the low SNR
parameter, or the overlap into our probabilities, we simply set the probability equal to the 1
minus the metric value for all targets. Unfortunately, with the exception of the “Likely Munition”
category, this means that there was in general not a 1 to 1 mapping between the ranks and the
probabilities.

6.4.6 Determination of Overlapping Signals

As discussed in Section 5.5.3, monostatic contour plots were made of each anomaly both as a
QC check and as a means of determining whether the anomaly suffers from overlapping
signatures. Thus, an entry was made in a spreadsheet giving some indication of the extent of the
overlap, if any. In some cases, this overlap may have been from multiple targets within the
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anomaly, as opposed to being caused by a separate anomaly. Therefore, we used this entry in
conjunction with the knowledge of the location of other anomalies relative to the target of
interest. The edge of the TEMTADS is 1m from a target located under the array center. Thus, we
declaring any anomaly for which the spreadsheet entry indicates overlap, and for which at least
one target was within 1.5m of the anomaly, as an overlapping signal.

6.5 DATA PRODUCTS

The data product requirements for the two demonstrations were different and different data
products were correspondingly generated. For the APG demonstration, we used the standard
reporting templates for the Blind Grid and the Open Field. The metrics in Section 3.0 were
calculated directly from the Scoring Report provided by the Standardized Test Site
administrators. The Response Stage value was the maximum signal level above background
from the magnetometer anomaly. The calculation of the discrimination stage was more
involved. For those targets classified as ordnance, the direct match metric was used as the
ranking. Additionally, targets which we could not analyze as described in Section 6.3 were
classified as ordnance, but given the lowest confidence rating, and noted as such in our
submission. For targets classified as clutter, a division was made between targets that had
moderate-to-good SNR and little to no overlap with adjacent targets, and those with either low
SNR or more serious overlap issues. For the former class, ranking was based on the direct match
metric, while for the latter, ranking was based on a combination of the direct match metric and
the peak signal. Classification and Type were determined from the direct match metric or the
coherence ratio p, as applicable. Easting, Northing, Depth, Azimuth and Dip all came from the
dipole inversion results.

For the former Camp SLO demonstration, the data products were summarized in the prioritized
dig list, a small section of which is reproduced in Table 6-1 as an example. The ‘decision
statistic’ refers to the direct match metric described in previous sections. The ‘Rank’ column
lists the anomalies from 1 to N were 1 indicates most likely non-TOI and N indicates high
confidence TOI. The ‘Category’ column lists an integer key of 1 for likely clutter, 2 for Can’t
Decide, 3 for likely munitions, or 4 for Can’t Analyze. The ‘Overlap’ column lists nearby
anomalies (if any) that spatially overlap. The ‘“Type’ column was used to list the munitions type.
The Easting, Northing, Depth, Azimuth, and Dip columns reported inversion results. The
‘Items/Anomaly’ column reported an estimate of the number of sources that contributed to the
observed anomaly.

Table 6-1 — Partial prioritized dig list for the former Camp SLO TEMTADS demonstration.

MASTER ID | DECISION STATISTIC Rank Category | Overlaps Type Easting (m) [Northing (m) Depth (m) | Azimuth Dip Items / Anomaly
441 0.1107 1047 2 0 705280.41 | 3913908.62 0.559 104.94 32.94 1
538 0.1088 1048 2 0 705301.47 | 3913778.32 -0.083 169.97 30.3 1
783 0.1075 1049 3 41 60mm | 705343.03 | 3913787.55 0.503 63.8 39.68 3
825 0.1072 1050 3 0 4.2in 705349.68 | 3913791.99 0.652 186.01 9.29 3
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7.0 PERFORMANCE ASSESSMENT

The TEMTADS array was constructed in 2007, field tested at the APG Standardized UXO Test
Site in June 2008 [15], and participated in the ESTCP UXO Classification Study at the former
Camp SLO site in June 2009 [19].

Due to the nature of the demonstrations at each site and the employed scoring methods, separate
Performance Objectives are provided for each demonstration in the following subsections.

7.1 APG STANDARDIZED UXO TEST SITE

For the APG demonstration, a magnetometer data set collected the previous month at the newly
reconfigured test site was used for anomaly detection. Approximately 200 cells in the Blind Grid
and 700 anomalies in the Indirect Fire Area were interrogated with the TEMTADS, averaging
200 anomalies/day on the Indirect Fire Area. After processing, ranked dig lists were generated
and submitted to ATC for scoring.

The performance objectives for this demonstration were summarized in Table 3-1, and are
repeated here as Table 7-1. The results for each criterion are then discussed in the following
sections. The ATC scoring report for the demonstration, Reference 15, provides the source
material for evaluating several of the performance objectives.
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Table 7-1 — Performance Results for The APG Demonstration

Performance

. Metric Data Required Success Criteria Success?
Objective

Quantitative Objectives

Number of false Reduction of

_ alarms . P_rioritized dig false al_arms by >
Reduction of eliminated at list 50% with 95% Yes
False Alarms demonstrator e Scoring report correct
operating point. from APG |den'gnf|cat|on of
munitions
Average error .
and standard ° FSt'?ate? AN and AE < 10
Location deviation in both a%;?;;)irs] fom cm Yes
Accuracy axes for . oNand oE < 15
interrogated * Scoring report cm
items from APG
Number of

. targets . 75 targets per
Production Rate interrogated each e Log of field work day Yes
day
Average time
Analysis Time _requm_ed for * Log of analysis 15 min per target Yes
inversion and work
classification
Qualitative Objectives
o Feedback from
Operator comes
Ease of Use 8?(lajrsaetor on ease to work smiling Yes

7.1.1 OBJECTIVE: REDUCTION OF FALSE ALARMS

This is the primary measure of the effectiveness of this technology. By collecting high-quality,
precisely-located data, we expect to be able to discriminate munitions from scrap and frag with
high efficiency.

7.1.1.1.Metric

At a seeded test site such as the APG standardized test site, the metric for false alarm elimination
is straightforward. We prepared a ranked dig list for the targets we interrogated with a dig/no-
dig threshold indicated and ATC personnel use their automated scoring algorithms to assess our
results.
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7.1.1.2.Data Requirements

The identification of most of the items in the test field is known to the test site operators. Our
ranked dig list is the input for this standard and ATC’s standard scoring is the output.

7.1.1.3.Success Criteria

The objective will be considered to be met if more than 50% of the non-munitions items can be
labeled as no-dig while retaining 95% of the munitions items on the dig list.

7.1.1.4.Results

This Objective was successfully met. The TEMTADS surveyed anomalies detected by the
MTADS magnetometer system in the Blind Grid and Indirect Fire Areas. For the Blind Grid
Test Area, the discrimination stage results are summarized in Table 7-2 and Table 7-3 (subsets of
Table 6a of Reference 15), broken out by munitions type and emplacement depth. For the
Indirect Fire Test Area, the discrimination stage results are summarized in Table 7-4 and Table
7-5 (subsets of Table 6¢ of Reference 15), broken out b(}_/ munitions type and emplacement depth.
The Discrimination Stage Probability of Detection Ps™* is defined as the number of correctly
identified munitions divided by the number of emplaced munitions, and the corresponding
Probability of False Positive prd'sc is the number of clutter items incorrectly identified as
munitions divided by the number of emplaced clutter items.

Table 7-2 - TEMTADS Blind Grid Test Area P,"* Results

P All Types 105-mm 81/60mm 37/25-mm
Munitions 0.97 0.93 0.97 1.00
Scores
0to 4D 1.00 1.00 1.00 1.00
4D to 8D 1.00 1.00 1.00 1.00
8D to 12D 0.67 0.67 0.00 1.00

Table 7-3 - TEMTADS Blind Grid Test Area Py, Results

i Al 010025 | >025t01 >1t0 10
fo Masses kg kg kg

Al Depths 0.01 0.02 0.00 0.00
010 0.15m 0.01 0.02 0.00 0.00
0.151t0 0.00 0.00 0.00 0.00
0.3m

0.310 N/A N/A N/A N/A
0.6m
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Table 7-4 —- TEMTADS Indirect Fire Test Area P;" Results

P All Types 105-mm 81/60mm 37/25-mm
Munitions 0.92 0.93 0.93 0.91
Scores
By
Density
High 0.88 0.92 0.91 0.80
Medium 0.94 0.97 0.89 0.97
Low 0.94 0.90 0.97 0.94
By Depth
0to4D 0.96 0.94 0.97 0.97
4D to 8D 0.92 0.94 0.92 0.86
8D to 12D 0.72 0.75 0.78 0.67

Table 7-5 - TEMTADS Indirect Fire Test Area Pg,"* Results
p, disc All 0to0.25 >0.25t01 >1to 10
e Masses kg kg kg

All Depths 0.04 0.03 0.02 0.11
010 0.15m 0.04 0.04 0.02 0.13
01510 0.04 0.00 0.06 0.06
0.3m

0.3t 0.08 0.00 0.00 0.20
0.6m

Discrimination Efficiency (E) and False Positive Rejection Rate (Ry,) measure the effectiveness
of the discrimination stage processing. The goal of discrimination is to retain the greatest
number of munitions detections from the anomaly list, while rejecting the maximum number of
anomalies arising from non-munitions items. Efficiency measures the fraction of detected
munitions retained after discrimination, while the rejection rate measures the fraction of false
alarms rejected. The measures are defined relative to the number of munitions items or the
number of clutter items that were actually detected by the sensor. The results for the Blind Grid
and Indirect Fire Test Areas are summarized in Table 7-6 and Table 7-7, from Tables 7a and 7c
of Reference 15. Performance levels are shown at two specific operating points on the ROC
curve: one at the point where no decrease in Py is incurred and the other at the operator-selected
operating point or threshold. In the Blind Grid, 98% of the emplaced munitions items were
detected. Of these, 99% (97% of the emplaced munitions) were correctly classified at our
selected operating point, with a corresponding false positive rejection rate of 99%. Moving out
the ROC to the point where 100% of the detected munitions items are correctly classified
reduces the false positive rejection rate to 95%. In the Indirect Fire Area, 94% of the emplaced
munitions were detected, and 92% of the emplaced munitions were correctly classified, resulting
in a discrimination efficiency of 98%. The corresponding false positive rejection rate was 92%.
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Table 7-6 —- TEMTADS Blind Grid Test Area Efficiency and Rejection Rates

False
Efficiency Positive
(E) Rejection
Rate
Al Operating 0.99 0.99
Point
\éVlth No Loss of 1.00 0.95
d

Table 7-7 - TEMTADS Indirect Fire Test Area Efficiency and Rejection Rates

False
Efficiency Positive
(E) Rejection
Rate
Al Operating 0.98 0.92
Point
\Fﬁ\jlth No Loss of 1.00 058

7.1.2 OBJECTIVE: LOCATION ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of predicted location of the targets marked to be dug. Large location errors lead to confusion
among the UXO techs assigned to the remediation costing time and often leading to removal of a
small, shallow object when a larger, deeper object was the intended target.

7.1.2.1.Metric

As above, the metric for location accuracy is straightforward at a seeded test site such as the
APG standardized test site. We provided an estimated position for all targets we interrogated
and ATC personnel used their automated scoring algorithms to assess our results.

7.1.2.2.Data Requirements

The location of most of the items in the test field is known to the test site operators. Our dig list
is the input for this standard and ATC’s standard scoring is the output.

7.1.2.3.Success Criteria

The objective will be considered to be met if the average position error was less than 10 cm in
both dimensions (low bias) and the standard deviation of each dimension was less than 15 cm
(accurate location).
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7.1.2.4.Results

This Objective was successfully met. The location accuracy of fit parameters generated from the
TEMTADS array data are given in Table 7-8 and Table 7-9, taken from Tables 9a and 9c of
Reference 15. Horizontal errors are not calculated for the Blind Grid.

Table 7-8 - TEMTADS Blind Grid Test Area Location Error and Standard Deviation

Standard
Mean Deviati

(m) eviation
(m)
Northing N/A N/A
Easting N/A N/A
Depth 0.02 0.04

Table 7-9 — TEMTADS Indirect Fire Test Area Location Error and Standard Deviation

Standard
Mean Deviati

(m) eviation
(m)
Northing 0.01 0.05
Easting 0.01 0.05
Depth 0.00 0.06

7.1.3 OBJECTIVE: PRODUCTION RATE

Even if the performance of the technology on the two metrics above is satisfactory, there is an
economic metric to consider. There is a known cost of remediating a suspected munitions item.
If the cost to interrogate a target is greater than this cost, the technology will be useful only at
sites with special conditions or target values. Note, however, that in its ultimate implementation
this technology will result in reacquisition, cued interrogation, and target flagging in one visit to
the site.

7.1.3.1.Metric

The number of targets interrogated per day is the metric for this objective. Combined with the
daily operating cost of the technology this gives the per-item cost.

7.1.3.2.Data Requirements

Survey productivity was determined from a review of the ATC demonstration field logs.
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7.1.3.3.Success Criteria

For this first demonstration, the objective will be considered to be met if at least 75 targets were
interrogated each survey day.

7.1.3.4.Results

This Objective was successfully met. Data collection times are taken from Table 5 of Reference
15. For the purposes of this discussion, a typical work day is assumed to be 7 hours of active
data collection and 1 hour of daily setup and tear down. 214 anomalies were investigated on the
Blind Grid over the course of 10 hours and 3 minutes, or 1.43 work days, or on average 149
anomalies / work day. 694 anomalies were investigated in the Indirect Fire Area over the course
of 32 hours and 30 minutes, or on average 150 anomalies / work day. In fact, through the
generosity of the ATC staff, we were able to work for ten or more hours on several days and
achieved production rates of > 220 anomalies / day for three days at the end of the first week of
the demonstration.

7.14 OBJECTIVE: ANALYSIS TIME

The ultimate implementation of this technology will involve on-the-fly analysis and
classification. The time for this will be limited to the driving time to the next anomaly on the
list. We tracked the near-real-time analysis time in this demonstration.

7.1.4.1.Metric

The time required for inversion and classification per anomaly is the metric for this objective
7.1.4.2.Data Requirements

Analysis time will be determined from a review of the data analysis logs.

7.1.4.3.Success Criteria

For this first demonstration, the objective will be considered to be met if the average inversion
and classification time was less than 15 min.

7.1.4.4.Results

This Objective was successfully met. The average inversion time per target was approximately
2.5 minutes on our field laptop computer. Including this, the average analysis time amounted to
12.5 minutes per anomaly. Since this was the first extensive test of the system in field mode, we
took the opportunity to consider various discrimination and classification methods, some of
which proved unfruitful. As a result of lessons learned from this undertaking, we expect the
average analysis time for future field runs to be less than that obtained here.

56



7.1.5 OBJECTIVE: EASE OF USE

This qualitative objective is intended as a measure of the long-term usability of the technology.
If the operator does not report that the technology is easy to use, shortcuts that can compromise
the efficiency of the technology will begin to creep into daily operations.

7.1.5.1.Data Requirements
This objective was evaluated based on operator feedback.
7.1.5.2.Results

This Objective was successfully met. Based on vehicle operator feedback, there were no
significant limitations to the efficient use of the system in the field. Several suggestions were
made for additional improvements to the navigation and data collection software. They have
been subsequently incorporated. Anomalies for future demonstrations will be ordered along 1m
swaths for maximum data collection efficiency.

7.2 FORMER CAMP SAN LUIS OBISPO

The performance objectives for the demonstration were presented in Table 3-2, and are repeated
here as Table 7-10.

Prior to our demonstration run at the former Camp SLO, we obtained measurements of each of
the four munitions types. Using the derived polarizabilities from these measurements and the
forward model of our TEMTADS code, response curves were generated for each munition.
These curves plot the minimum expected peak signal (the peak signal when the target is oriented
horizontally) and the maximum expected peak (the peak signal when the target is oriented
horizontally) from each target as a function of distance below sensor or depth below ground.
The peak signal is that obtained from the monostatic term of the center element of the array at
the first time gate.

A calibration strip, comprised of two samples of each of the four targets of interest plus two
shotputs (Table 7-11), was emplaced on site as a means of verifying proper system operation on
a daily basis. The strip was surveyed twice daily, once at the beginning of the day, and once at
the end. The sole exception to this procedure occurred on our third day, when brake problems
with the vehicle forced an early cessation of activities.
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Table 7-10 — Performance Objectives for the former Camp SLO Demonstration

ng}gr;?vr;ce Metric Data Required Success Criteria Success?
Fraction of 100% as allowed for
Site Coverage | assigned anomalies Survey results by topography / Yes
interrogated vegetation
e < 15% rms variation
System response e System response in amplitude _
Calibration consistently curves e Down-track location
Strip Results matches physics- y Da!ly . . + 25¢m No
based model calibration strip | e  All response values
data fall within bounding
curves
e Estimated
Average error and location from
Location standard deviation analyses AN and AE <5cm No
Accuracy in both axes for e Ground truth oNand cE <10cm
interrogated items from validation
effort
o Estimated
- location from
Depth iSr;[aéne(jpe}[Ldfg$V|atlon analyses ADepth <5cm No
Accuracy interrogated items e Ground truth oDepth <10 cm
from validation
effort
Number of e Survey results
Production anomalies : .
Rate investigated each e Log of field 125 anomalies/day Yes
day work
Data Throughput of data Log of analysis All data QC’ed on site Yes
Throughput QC process work and at pace with survey
Reliability and | General Field team comes to
Robustnegs Observations Team feedback work smiling Yes
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Table 7-11 — Details of former Camp SLO Calibration Strip

:tgm Description Easting (m) Northing (m) | Depth (m) Inclination '(iz:/:/n#t)hm N)
T-001 shotput 705,417.00 3,913,682.00 0.25 N/A N/A
T-002 81mm 705,420.92 3,913,687.63 0.30 Vertical Down 0
T-003 81mm 705,424.10 3,913,692.95 0.30 Horizontal 120
T-004 60mm 705,427.53 3,913,698.54 0.30 Vertical Down 0
T-005 60mm 705,430.85 3,913,704.10 0.30 Horizontal 120
T-006 4.2” mortar 705,434.54 3,913,709.44 0.30 Vertical Down 0
T-007 4.2” mortar 705,437.99 3,913,715.04 0.30 Horizontal 120
T-008 2.36” rocket 705,441.46 3,913,720.24 0.30 Vertical Down 0
T-009 2.36” rocket 705,445.00 3,913,725.91 0.30 Horizontal 120
T-010 shotput 705,448.50 3,913,731.50 0.35 N/A N/A

7.2.1 OBJECTIVE: SITE COVERAGE

A list of previously identified anomalies was provided by the Program Office.

7.2.1.1.Metric

Site coverage is defined as the fraction of the assigned anomalies surveyed by the TEMTADS.
7.2.1.2.Data Requirements

The collected data were compared to the original anomaly list. All interferences were noted in
the field log book.

7.2.1.3.Success Criteria

The objective was considered met if 100% of the assigned anomalies are surveyed with the
exception of areas that can not be surveyed due to topology / vegetation interferences.

7.2.1.4.Results

This objective was successfully met. Of the list provided by the Program Office, all but 5 were
measured. Failure to measure these 5 anomalies was due to the presence of rocks which
prevented the operator from positioning the TEMTADS over the target.

7.2.2 OBJECTIVE: CALIBRATION STRIP RESULTS

This objective supports that each sensor system is in good working order and collecting
physically valid data each day. The calibration strip was surveyed twice daily. The peak
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positive response of each emplaced item from each run was compared to the physics-based
response curves generated prior to data collection on site using each item of interest.

7.2.2.1.Metric

The reproducibility of the measured response of each sensor system to the items of interest and
the comparison of the response to the response predicted by the physics-based model defines this
metric.

7.2.2.2.Data Requirements

Response curves for each sensor / item of interest pair are used to document what the physics-
based response of the system to the item should be. The tabulated peak response values from
each survey of the Calibration Strip demonstrates the reproducibility and validity of the sensor
readings.

7.2.2.3.Success Criteria

The objective is considered met if all measured responses fall within the range of physically
possible values based on the appropriate response curve. Additionally, the RMS variation in
responses should be less than 15% of the measured response and the down-track location of the
anomaly should be within 25 cm of the corresponding seeded item’s true location.

7.2.2.4.Results

This objective was not successfully met in full. The measured peak signals for all of the
emplaced items are shown in Figure 7-1 through Figure 7-5. The maximum (red) and minimum
(blue) response curves are plotted for all objects except the shotput, which has only one curve
due to symmetry. The two curves for the 81-mm and 4.2-in mortar are nearly equal. For self-
consistency, we have plotted the measurements at the mean inverted depth, rather than the
reported depths. The measured values generally fit well within the bounding curves, with the
4.2-in mortar and shotput results the poorest, with a tendency to underestimate the peak value.

Careful examination of the data shows that this variation is the result of the shot-to-shot
precision with which the array can be positioned in exactly the same spot each time. Because the
response curves are generated assuming the target is directly below the sensor, any offset in the
sensor position will result in the derived peak signal being smaller than that predicted by the
curve, as is observed. For future demonstrations, the metric of polarizability amplitude is
recommended as these values are invariant to array position.

Table 7-12 shows the mean and standard deviation in the peak measured signal for all of the
emplaced Calibration Strip items. Of the 10 items, three give RMS variations above our stated
goal of 15%, with only T-008 being significantly above. This target consistently inverted to a
depth of 18.5 cm, and thus showed the largest spatial variation in signal. This, coupled with the
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array not always being properly centered on the target, explains the larger variation for this

object.

Table 7-12 — Peak Signals for former Camp SLO Calibration Strip Emplaced Items

Item Description Depth Mean Signal Std Dev. Variation
ID P (m) (mV/Amp) (mV/IAmp,le) | (%)
T-001 shotput 0.25 27.44 4.18 15.23
T-002 81mm 0.30 15.46 1.39 8.99
T-003 81lmm 0.30 10.96 0.91 8.30
T-004 60mm 0.30 8.74 0.89 10.18
T-005 60mm 0.30 6.73 1.13 16.79
T-006 4.2” mortar 0.30 52.38 5.82 11.11
T-007 4.2” mortar 0.30 41.75 5.25 12.57
T-008 2.36” rocket 0.30 32.70 7.91 24.19
T-009 2.36” rocket 0.30 4.04 0.32 7.92
T-010 shotput 0.35 11.82 1.52 12.86
10000.00
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Figure 7-1 — Peak signals compared with response curve for a 2.36-in rocket.

61

0.6
Depth (m)




Peak Signal(mV/A)
1 IIIIIIII 1 IIIIIIII 1 IIIIIIII I NNt

0.0 0.2 0.4 0.8 1.0

=
no

0.6
Depth (m)

Figure 7-2 — Peak signals compared with response curve for a 4.2-in mortar.
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Figure 7-3 — Peak signals compared with response curve for a 60-mm mortar.
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Figure 7-4 — Peak signals compared with response curve for an 81-mm mortar.
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Figure 7-5 — Peak signals compared with response curve for a 4-in diameter shotput.

The variability and accuracy of the positional fit parameters for the Calibration Strip emplaced
items were determined by comparing the inverted Northing and Easting values with reported
values. These numbers are shown in Table 7-13. We give the mean vector offset dR between
the inverted and reported position as well as the Easting (dx) and Northing (dy) components.
The dx and dy values are computed using the inverted positions minus the reported ones.

63



Two points are clear from the values in Table 7-13. First, the inversion process is very robust,
with no standard deviations larger than 2cm. Second, there are a few large discrepancies
between our inverted positions and the reported ones. All offsets are below our target value of
25cm, with the exception of T-002. It is possible that some items have drifted or settled since
their original emplacement.

Table 7-13 — Position Accuracy and Variability for former Camp SLO Calibration Strip Emplaced Items

Std Dev | Mean Std Dev | Mean Std Dev
:tDem Description ?ni;) th I(\r/llqe)an dR dR dx dx dy dy

(m, 1) |[(m) (m) (m) (m)
T-001 | shotput 0.25 0.209 0.007 0.167 0.013 0.124 0.011
T-002 | 81mm 0.30 0.413 0.008 -0.372 0.008 -0.178 | 0.010
T-003 | 81mm 0.30 0.058 0.014 0.028 0.010 -0.049 | 0.020
T-004 | 60mm 0.30 0.026 0.013 0.013 0.010 0.015 0.019
T-005 | 60mm 0.30 0.038 0.012 -0.003 0.011 0.035 0.017
T-006 | 4.2” mortar | 0.30 0.098 0.008 0.082 0.009 0.054 0.009
T-007 | 4.2” mortar | 0.30 0.063 0.008 0.061 0.009 0.013 0.010
T-008 | 2.36” rocket | 0.30 0.035 0.010 -0.027 0.011 0.018 0.011
T-009 | 2.36” rocket | 0.30 0.112 0.016 0.051 0.010 -0.099 | 0.018
T-010 | shotput 0.35 0.166 0.006 0.133 0.008 -0.098 | 0.014

7.2.3 OBJECTIVE: LOCATION ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of the predicted location of the targets marked to be dug. Large location errors lead to confusion
among the UXO technicians assigned to the remediation, costing time and often leading to
removal of a small, shallow object when a larger, deeper object was the intended target.

7.2.3.1.Metric

The average error and standard deviation in both horizontal axes will be computed for the items
selected for excavation during the validation phase of the study.

7.2.3.2.Data Requirements

The anomaly fit parameters and the ground truth for the excavated items are required to
determine the performance of the fitting routines in terms of the location accuracy.

7.2.3.3.Success Criteria

This objective is considered as met if the average error in position for both Easting and Northing
quantities is less than 5 cm and the standard deviation for both is less than 10 cm.
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7.2.3.4.Results

This objective was not successfully met in full. The average Northing position error for all
measured data was 1.5cm, while the average Easting position error was 3cm. The standard
deviations, however, were larger than desired, with both values about 25cm. Excluding those
anomalies for which multiple targets were found produces negligible improvement. We suspect
the higher values are due to the large number of small, low SNR clutter items, which result in
greater uncertainty in both the measured and fitted values. Indeed, if we restrict ourselves to
those anomalies which we classified as ‘likely UXO,” the Northing and Easting standard
deviations drop to 7cm and 5cm, respectively.

7.24 OBJECTIVE: DEPTH ACCURACY

An important measure of how efficiently any required remediation will proceed is the accuracy
of the predicted depth of the targets marked to be dug. Large depth errors lead to confusion
among the UXO technicians assigned to the remediation, costing time and often leading to
removal of a small, shallow object when a larger, deeper object was the intended target.

7.2.4.1.Metric

The standard deviation of the predicted depths with respect to the ground truth will be computed
for the items which are selected for excavation during the validation phase of the study.

7.2.4.2.Data Requirements

The anomaly fit parameters and the ground truth for the excavated items are required to
determine the performance of the fitting routines in terms of the predicted depth accuracy.

7.2.4.3.Success Criteria

This objective is considered as met if the average error in depth is less than 5 cm and the
standard deviation is less than 10 cm.

7.2.4.4 Results

This objective was not successfully met in full. The average depth error for all measured data
was 2.5cm. The standard deviation was a bit larger than desired, with a value of 14cm. As we
did for the Northing and Easting, we tried excluding those anomalies for which multiple targets
were found. This lowered the value to 11cm. Restricting ourselves to those anomalies that we
classified as ‘likely UXO,” the standard deviation is lowered to a value of 7cm. This approach
attempts to exclude the numerous, small, low SNR clutter items from the analysis.
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7.25 OBJECTIVE: PRODUCTION RATE

This objective considers a major cost driver for the collection of high-density, high-quality
geophysical data, the production rate. The faster high quality data can be collected, the higher
the financial return on the data collection effort.

7.2.5.1.Metric

The number of anomalies investigated per day determines the production rate for a cued survey
system.

7.2.5.2.Data Requirements

The metric can be determined from the combination of the field logs and the survey results. The
field logs record the amount of time per day spent acquiring the data and the survey results
determine the number of anomalies investigated in that time period.

7.2.5.3.Success Criteria
This objective is considered met if average production rate is at least 125 anomalies / day.
7.2.5.4.Results

This objective was successfully met. A total of 1547 anomalies (including redo’s) were measured
over a 10-day run for an average of 155 anomalies/day. The only days for which our average fell
below our goal of 125 anomalies/day were the final day, due to finishing up all targets, and 2
days in which necessary vehicle repairs shortened our workday.

7.2.6 OBJECTIVE: DATA THROUGHPUT

The collection of a complete, high-quality data set with the sensor platform is critical to the
downstream success of the UXO Classification Study. This objective considers one of the key
data quality issues, the ability of the data analysis workflow to support the data collection effort
in a timely fashion. To maximize the efficient collection of high quality data, a series of
MTADS standard data quality check are conducted during and immediately after data collection
on site. Data which pass the QC screen are then processed into archival data stores. Individual
anomaly analyses were then conducted on those archival data stores. The data QC /
preprocessing portion of the workflow needs to keep pace with the data collection effort for best
performance.

7.2.6.1.Metric

The throughput of the data quality control workflow is at least as fast the data collection process,
providing real time feedback to the data collection team of any issues.
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7.2.6.2.Data Requirements

The data analyst’s log books will provide the necessary data for determining the success of this
metric.

7.2.6.3.Success Criteria

This objective is considered met if all collected data can be processed through the data quality
control portion of the workflow in a timely fashion.

7.2.6.4.Results

This objective was successfully met. Data were normally downloaded several times during each
workday, and quality control on these datasets was usually completed on the same day. Quality
control checks successfully caught missed anomalies, a small number of corrupt data files, and
targets which needed re-measuring.

7.2.7 OBJECTIVE: RELIABILITY AND ROBUSTNESS

This objective represents an opportunity for all parties involved in the data collection process,
especially the vehicle operator, to provide feedback on areas where the process could be
improved.

7.2.7.1.Data Requirements

This decision was based on verbal discussions, communications, and opinions of the entire field
team.

7.2.7.2.Results

This objective was successfully met. Based on vehicle operator feedback, there were no
significant limitations to the efficient use of the system in the field.

8.0 COST ASSESSMENT

The costs for a 3,000 anomaly cued survey using the TEMTADS are detailed in Table 8-1. The
costs associated with the former Camp SLO demonstration were used as the basis for this
assessment. The costs reported here do not include any costs associated with the reconnaissance
data that was used to identify and create the cued list of anomalies. Implicit in our assessment is
that that the 3,000 anomalies are bounded within an area of roughly 25 acres, or 120
anomalies/acre. Survey time would increase incrementally as the anomaly density decreased as
transit time between anomalies increased. All costs are estimated in FY 2009 dollars.
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8.1 COST MODEL

A cost model was constructed from the costs associated with the TEMTADS survey of the
former Camp SLO demonstration site. Cost categories were mobilization, logistics (if required),
field work, demobilization, data analysis, and reporting. Based on the demonstrated production
rate for the former Camp SLO demonstration, four weeks of field work would be required.
Based on the production rate for the APG demonstration, the SLO production rate is a
conservative lower bound. This model does not include the cost of anomaly classification and
producing a prioritized dig list.
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Table 8-1 — Summary of Costs for a 25-acre, 3000 anomaly TEMTADS survey.

Cost Category Sub-Category Cost Sub-Total
Mobilization Costs $44,550
Preliminary Site Visit $6,500
Test Plan Preparation $10,250
Equipment Prep and Packing $9,750
53’ Trailer Transportation $5,800
Analysts Set-up $10,000
Outbound Travel for 3 Personnel $2,250
Logistics $16,500
(if required) Establish GPS Control Points $2,000
Delivery/Removal of Logistics Items $2,000
Rental of Logistics Items / Fuel $6,000
Materials $6,500
Operating Costs $139,050
(4-week Survey) Supervisor $19,000
On-site Analyst $31,800
Vehicle Operator $12,750
Field Technician (2 each) $17,250
Per Diem (3 Personnel x 4 weeks x $1250) | $15,000
Rental Vehicles $8,650
System Maintenance $13,000
Sensor Repair $21,600
Analysis & Reporting $44,750
Data Reduction to Anomaly List $28,000
Demonstration Data Report $16,750
Demobilization Costs $11,550
Equipment Unpacking $3,500
53’ Trailer Transportation $5,800
Inbound Travel for 3 Personnel $2,250
Total Cost $256,400
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8.2 COST DRIVERS

Two factors were expected to be strong drivers of cost for this technology as demonstrated. The
first is the number of anomalies which can be surveyed per day. Higher productivity in data
collection equates to more anomalies investigated for a given period of time in the field. The
time required for analyzing individual anomalies can be significantly higher than for other, more
traditional methods and could become a cost driver due to the time involvement. The thoughtful
use of available automation techniques for individual anomaly analysis with operator QC support
can moderate this effect.

8.3 COST BENEFIT

The main benefit to using a UXO classification process is cost-related. The ability to reduce the
number of non-hazardous items that have to be dug or dug as hazardous directly reduces the cost
of a remediation effort. The additional information for anomaly classification provided by the
TEMTADS array provides additional information for the purposes of anomaly classification. If
there is buy-in from the stakeholders to use these techniques, this information can be used to
reduce costs.

9.0 IMPLEMENTATION ISSUES

Implementation issues for this system / technology fall into two categories: operational concerns
and data quality / analysis issues. In terms of operational concerns, the TEMTADS as
implemented is a large, vehicle-towed system that operates best in large, open areas. As seen at
the former Camp SLO demonstration, it is possible to operate the system in rocky terrain with
grades approaching 20%, but at reduced operating capacity and increased system wear. Smaller
versions of the system are currently under development under several ESTCP and SERDP
projects to address these concerns. The goal is to design and field units more amenable to
operation in more confined terrain and topology and smaller tow vehicles / man-portable and
handheld operation. In terms of data quality, one pays a small penalty in signal amplitude to use
the smaller TEMTADS sensor coil as compared to other systems such as a high-power EM61
MkIl.  The dramatically improved electrical performance of these new sensors helps
counterbalance this issue, particularly in the ability to perform better averaging (or stacking).
However, one needs in place robust data QC techniques to know when to employ these
capabilities in an efficient manner.
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Appendix A: Points of Contact

Phone .
POINT OF Role in
CONTACT ORGANIZATION Fax_ Project
e-mail
ESTCP Program Office
Dr. Jeff 901 North Stuart Street, ;%32%2%11213 ((\F/)) Director,
Marqusee Suite 303 . . ESTCP
Arlington, VA 22203 jeffrey.marqusee@osd.mil
ESTCP Program Office
Dr. Anne 901 North Stuart Street, 703-696-3826 (V) Deputy
Andrews Suite 303 703-696-2114 (F) Director,
Arlington, VA 22203 anne.andrews@osd.mil ESTCP
ESTCP Program Office 703-696-3726 (V)
Dr. Herb 901 North Stuart Street, 703-696-2114 (F) Program
Nelson Suite 303 202-215-4844 (C) Manager, MM
Arlington, VA 22203 herbert.nelson@osd.mil
HydroGeoLogic, Inc. Proaram
Mr. Peter 11107 Sunset Hills Road, 703-736-4511 (V) Mar?a or's
Knowles Suite 400 pknowles@hgl.com Assist%mt MM
Reston, VA 20190 ’
Naval Research Lab 202-767-3556 (V)
Dr. Dan Chemistry Division 202-404-8119 (F) Co-Pl and
Steinhurst Code 6110 703-850-5217 (C) Data Analyst
Washington, DC 20375 dan.steinhurst@nrl.navy.mil
SAIC 703-414-3904 (V) Co-Pl and
Dr. Tom Bell 200 12th Street South 703-413-0505 (F) Quality
Arlinaton. VA 22202 301-712-7021 (C) Control
gton, thomas.h.bell@saic.com Officer
410-278-2999 (V) Test Site
Mr. Rick Fling Aberdeen Test Center 301-992-9080 (C)
. . . Manager
rick.fling@us.army.mil
Environmental
California Polytechnic Health &
Mr. David State University 3(855;22615222 ((\F/)) Safety
Ragsdale San Luis Obispo, CA dragsdal@calpoly.edu Manager /
93407 g POy Risk
Management
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